[中考专题]2022年北京市门头沟区中考数学历年高频真题专项攻克-B卷(含答案解析).docx

上传人:可****阿 文档编号:32550691 上传时间:2022-08-09 格式:DOCX 页数:31 大小:1.31MB
返回 下载 相关 举报
[中考专题]2022年北京市门头沟区中考数学历年高频真题专项攻克-B卷(含答案解析).docx_第1页
第1页 / 共31页
[中考专题]2022年北京市门头沟区中考数学历年高频真题专项攻克-B卷(含答案解析).docx_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《[中考专题]2022年北京市门头沟区中考数学历年高频真题专项攻克-B卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《[中考专题]2022年北京市门头沟区中考数学历年高频真题专项攻克-B卷(含答案解析).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年北京市门头沟区中考数学历年高频真题专项攻克 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个圆锥的高为3,母线长为5,则圆锥的侧面积是

2、( )A10B12C16D202、甲、乙两地相距s千来,汽车从甲地匀速行驶到乙地,行驶的时间t(小时)关于行驶速度v(千米时)的函数图像是( )ABCD3、在以下实数中:-0.2020020002,无理数的个数是( )A2个B3个C4个D5个4、已知有理数在数轴上的位置如图所示,且,则代数式的值为( )AB0CD5、某三棱柱的三种视图如图所示,已知俯视图中,下列结论中:主视图中;左视图矩形的面积为;俯视图的正切值为其中正确的个数为( )A个B个C个D个6、若关于x的不等式组无解,则m的取值范围是( )ABCD7、下列关于x的方程中,一定是一元二次方程的是()Aax2bx+c0B2ax(x1)2

3、ax2+x5C(a2+1)x2x+60D(a+1)x2x+a08、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:;抛物线与轴的另一个交点的坐标为;方程有两个不相等的实数根其中正确的个数为( ) 线 封 密 内 号学级年名姓 线 封 密 外 A个B个C个D个9、如图,已知ADBC,欲用“边角边”证明ABCCDA,需补充条件()AAB = CDBB = DCAD = CBDBAC = DCA10、如图,将ABC绕点C按逆时针方向旋转至DEC,使点D落在BC的延长线上已知A32,B30,则ACE的大小是( )A63B58C54D56第卷(非选择题 70分)二、填空题

4、(5小题,每小题4分,共计20分)1、已知是二元一次方程的一个解,那么_2、多项式x3-4x2y326的次数是_3、等腰三角形ABC中,项角A为50,点D在以点A为圆心,BC的长为半径的圆上,若BD=BA,则DBC的度数为_4、如图,已知ABC与ADE均是等腰直角三角形,BACADE90,ABAC1,ADDE,点D在直线BC上,EA的延长线交直线BC于点F,则FB的长是 _5、小华为学校“赓续百年初心,庆祝建党百年”活动布置会场,在个不透明的口袋里有4根除颜色以外完全相同的缎带,其中2根为红色,2根为黄色,从口袋中随机摸出根缎带,则恰好摸出1根红色缎带1根黄色缎带的概率是_三、解答题(5小题,

5、每小题10分,共计50分)1、在ABC中,BAC90,P是线段AC上一动点,CQBP于点Q,D是线段BQ上一点,E是射线CQ上一点,且满足,连接AE,DE(1)如图1,当ABAC时,用等式表示线段DE与AE之间的数量关系,并证明;(2)如图2,当AC2AB6时,用等式表示线段DE与AE之间的数量关系,并证明;(3)在(2)的条件下,若,AECQ,直接写出A,D两点之间的距离2、已知顶点为D的抛物线交y轴于点,且与直线l交于不同的两点A、B(A、B不与点D重合)(1)求抛物线的解析式;(2)若,试说明:直线l必过定点;过点D作,垂足为点F,求点C到点F的最短距离 线 封 密 内 号学级年名姓 线

6、 封 密 外 3、先化简,再求值:,其中4、在ABC中,AD为ABC的中线,点E是射线AD上一动点,连接CE,作,射线EM与射线BA交于点F(1)如图1,当点E与点D重合时,求证:;(2)如图2,当点E在线段AD上,且与点A,D不重合时,依题意,补全图形;用等式表示线段AB,AF,AE之间的数量关系,并证明(3)当点E在线段AD的延长线上,且时,直接写出用等式表示的线段AB,AF,AE之间的数量关系5、(综合与实践)现实生活中,人们可以借助光源来测量物体的高度已知榕树CD,FG和灯柱AB如图所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中

7、一些数据,则可求出所需要的数据,具体操作步骤如下:根据光源确定榕树在地面上的影子;测量出相关数据,如高度,影长等;利用相似三角形的相关知识,可求出所需要的数据根据上述内容,解答下列问题:(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;(2)如图,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;(3)无论太阳光还是点光源,其本质与视线问题相同日常生活中我们也可以直接利用视线解决问题如图,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离

8、FD为30米一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处则广告牌EM的高度为 米-参考答案-一、单选题1、D【分析】首先利用勾股定理求得底面半径的长,然后根据扇形的面积公式即可求解【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:圆锥的底面半径是:,则底面周长是:,则圆锥的侧面积是:故选:D【点睛】本题主要考查三视图的知识和圆锥侧面面积的计算,解题的关键是由三视图得到立体图形,及记住圆锥的侧面面积公式2、B【分析】直接根据题意得出函数关系式,进而得出函数图象【详解】解:由题意可得:t=

9、,是反比例函数,故只有选项B符合题意故选:B【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键3、C【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数据此解答即可【详解】解:无理数有-0.2020020002,共有4个故选:C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.2020020002,等有这样规律的数解题的关键是理解无理数的定义4、C【分析】首先根据数轴的信息判断出有理数的大小关系,然后确定各绝对值中代数式

10、的符号,即可根据绝对值的性质化简求解【详解】解:由图可知:,故选:C【点睛】本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌握化简绝对值的方法以及整式的加减运算法则是解题关键5、A【分析】过点A作ADBC与D,根据BD=4,可求AD=BD,根据,得出BC=7,可得DC=BC-BD=7-4=3可判断;根据左视图矩形的面积为36=可判断;根据tanC可判断【详解】解:过点A作ADBC与D, 线 封 密 内 号学级年名姓 线 封 密 外 BD=4,AD=BD,BC=7,DC=BC-BD=7-4=3,主视图中正确;左视图矩形的面积为36=,正确;tanC,正确;

11、其中正确的个数为为3个故选择A【点睛】本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型6、D【分析】解两个不等式,再根据“大大小小找不着”可得m的取值范围【详解】解:解不等式得:,解不等式得:,不等式组无解,解得:,故选:D【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键7、C【分析】根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可【详解】解:A当a=0时,ax2+bx+c=0不是一元二次方程,故此选项不

12、符合题意;B2ax(x-1)=2ax2+x-5整理后化为:-2ax-x+5=0,不是一元二次方程,故此选项不符合题意;C(a2+1)x2-x+6=0,是关于x的一元二次方程,故此选项符合题意;D当a=-1时,(a+1)x2-x+a=0不是一元二次方程,故此选项不符合题意 线 封 密 内 号学级年名姓 线 封 密 外 故选:C【点睛】本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:是整式方程,只含有一个未知数,所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a0)8、C【分析】根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行

13、判断【详解】解:如图,开口向上,得,得,抛物线与轴交于负半轴,即,故错误;如图,抛物线与轴有两个交点,则;故正确;由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,故正确;如图所示,当时,根的个数为与图象的交点个数,有两个交点,即有两个根,故正确;综上所述,正确的结论有3个故选:C【点睛】主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用9、C【分析】由平行线的性质可知,再由AC为公共边,即要想利用“边角边”证明ABCCDA,可添加AD=CB即可【详解】ADB

14、C,AC为公共边,只需AD=CB,即可利用“边角边”证明ABCCDA故选:C【点睛】本题考查平行线的性质,三角形全等的判定理解“边角边”即为两边及其夹角是解答本题的关键 线 封 密 内 号学级年名姓 线 封 密 外 10、C【分析】先根据三角形外角的性质求出ACD=63,再由ABC绕点C按逆时针方向旋转至DEC,得到ABCDEC,证明BCE=ACD,利用平角为180即可解答【详解】解:A=33,B=30,ACD=A+B=33+30=63,ABC绕点C按逆时针方向旋转至DEC,ABCDEC,ACB=DCE,BCE=ACD,BCE=63,ACE=180-ACD-BCE=180-63-63=54故选

15、:C【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到ABCDEC二、填空题1、#【分析】把代入,即可求出a的值【详解】解:由题意可得:,解得:,故答案为:【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解2、5【分析】根据多项式次数的定义解答【详解】解:多项式各项的次数分别为:3、5、0,故答案为:5【点睛】此题考查了多项式次数的定义:多项式中次数最高项的次数是多项式的次数,熟记定义是解题的关键3、15或115【分析】根据题意作出图形,根据等腰三角形的性质和三角形的内角和定理求得,根据即可求得DBC的度数【详解】解:如图

16、,等腰三角形ABC中,顶角为50,点D在以点A为圆心,BC的长为半径的圆上, 线 封 密 内 号学级年名姓 线 封 密 外 , BD=BA,又当在位置时,同理可得故答案为:15或115【点睛】本题考查了圆的性质,三角形全等的性质与判定,三角形内角和定理,等腰三角形的定义,根据题意画出图形是解题的关键4、【分析】过点A作AHBC于点H,根据等腰直角三角形的性质可得DH=,CD=,再证明ABFDCA,进而对应边成比例即可求出FB的长【详解】解:如图,过点A作AHBC于点H,BAC=90,AB=AC=1,BC=,AHBC,BH=CH=,AH=,AD=DE=,DH=,CD=DH-CH=,ABC=ACB

17、=45,ABF=ACD=135, 线 封 密 内 号学级年名姓 线 封 密 外 DAE=45,DAF=135,BAC=90,BAF+DAC=45,BAF+F=45,F=DAC,ABFDCA,BF=,故答案为:【点睛】本题考查了相似三角形的判定与性质,等腰直角三角形,解决本题的关键是得到ABFDAC5、【分析】画树状图共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,再由概率公式即可求解【详解】解:根据题意画出树状图,得:共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,所以摸出1根红色缎带1根黄色缎带的概率=【点睛】本题考查了列表法与树状图法:利用列表法

18、或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率是解题的关键三、解答题1、(1),理由见解析(2),理由见解析(3)【分析】(1)连接AD根据,可得,从而得到,再由,可得,从而得到,进而得到,即可求解;(2)连接AD先证明,可得到,从而得到,再由勾股定理,即可求解;(3)根据题意可先证明四边形ADQE是矩形,可得到ADBP,再由,可得AP=4,再由勾股定 线 封 密 内 号学级年名姓 线 封 密 外 理可得,然后根据三角形的面积,即可求解(1)解:理由:如图,连接AD,即,在RtDAE中,;(2)解:,理由:如图,连接AD,即,

19、在RtDAE中, 线 封 密 内 号学级年名姓 线 封 密 外 ;(3)解: 由(2)得:DAE=90,AECQ,BPCQ,DQE=AEQ=90,PQAE,四边形ADQE是矩形,ADP=90,即ADBP,AC=6,AP=4,AC2AB6,AB=3,BAC=90, , , 【点睛】本题主要考查了相似三角形、全等三角形、矩形的判定和性质,勾股定理等知识,熟练掌握相似三角形、全等三角形、矩形的判定和性质,勾股定理等知识是解题的关键2、(1)(2)见解析;【分析】(1)将点代入即可求得的值,继而求得二次函数的解析式;(2)设直线的解析为,设,则, 联立直线解析式和抛物线解析式,根据根与系数的关系求得进

20、而求得,证明,根据相似比求得,进而根据两个表达式相等从而得出与的关系式,代入直线解析式,根据直线过定点与无关,进而求得定点坐标;设,由可知经过点,则, ,进而根据90圆周角所对的弦是直径,继而判断的轨迹是以的中点为圆心,为直径的圆,根据点与圆的位置即可求得最小值(1)解:抛物线交y轴于点,解得抛物线为(2)如图,过点分别作轴的垂线,垂足分别为, 线 封 密 内 号学级年名姓 线 封 密 外 设直线的解析为,设,则, 则的坐标即为的解即,轴,轴或或当时,则过定点 A、B不与点D重合则此情况舍去;当时,即过定点必过定点如图,设, 线 封 密 内 号学级年名姓 线 封 密 外 ,,在以的中点为圆心,

21、为直径的圆上运动的最小值为【点睛】本题考查了待定系数法求二次函数解析式,相似三角形的性质与判定,一元二次方程根与系数的关系,点与圆的位置关系求最值,勾股定理,二次函数与直线交点问题,掌握以上知识是解题的关键3、,-1【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可【详解】解:原式=,当时,原式=【点睛】本题考查了分式的化简与求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序4、(1)见解析;(2),证明见解析;(3)当时,,当时,【分析】(1)根据等腰三角形三线合一的性质得,从而可得在中,进而即可求解;(2)画出图形,在线段AB上取点G,使,再证明,进

22、而即可得到结论;(3)分两种情况:当时,当时,分别画出图形,证明或,进而即可得到结论【详解】(1),是等腰三角形,,,AD为ABC的中线,在中,;(2),证明如下: 线 封 密 内 号学级年名姓 线 封 密 外 如图2,在线段AB上取点G,使,是等边三角形,是等腰三角形,AD为ABC的中线,即,在与中,;(3)当时,如图3所示:与(2)同理:在线段AB上取点H,使,是等边三角形,是等腰三角形,AD为的中线,当时,如图4所示: 线 封 密 内 号学级年名姓 线 封 密 外 在线段AB的延长线上取点N,使,是等边三角形,在与中, ,【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及等边三

23、角形的判定与性质,根据题意做出辅助线找全等三角形是解题的关键5、(1)见解析(2)(3)【分析】(1)根据题意画出图形;(2)证明ECDEPB,根据相似三角形的性质列出比例式,把已知数据代入计算即可;(3)根据BCDBEF求出BD,再根据ACDAMF求出MF,进而求出EM【小题1】解:图中GH即为所求;【小题2】CDPB,ECDEPB,即,解得:PB=9, 线 封 密 内 号学级年名姓 线 封 密 外 FGPB,HFGHPB,即,解得:FG=,答:榕树FG的高度为米;【小题3】CDEF,BCDBEF,即,解得:BD=75,CDEF,ACDAMF,即,解得:MF=,EM=EF-MF=70-=(米),故答案为:【点睛】本题考查的相似三角形的判定和性质的应用,掌握相似三角形的判定定理和性质定理是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁