《中考特训浙教版初中数学七年级下册第五章分式综合测评试题(含解析).docx》由会员分享,可在线阅读,更多相关《中考特训浙教版初中数学七年级下册第五章分式综合测评试题(含解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式综合测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、计算: ( )A3B3CD2、关于的分式方程有增根,则的值为( )A1BC2D3、某种细胞的直径是0.0005mm,这个细胞的直径是( )AmmBmmCmmDmm4、蚕丝线的截面面积0.000000785平方厘米,此面积数字可用科学记数法表示为()A7.85106B7.85106C7.85107D7.851075、医学家发现新冠病毒直径约为0.00000006米,数据0.00000006用科学记数法表示为()
2、A0.6108B6108C60107D0.61076、已知, , ,则m, n, p的大小关系是( )Am p nBn m pCp n mDn p m 7、随着北斗系统全球组网的步伐,北斗芯片的研发生产技术也在逐步成熟,国产北斗芯片可支持接收多系统的导航信号,应用于自动驾驶、无人机、机器人等高精度定位需求领域,将为中国北斗导航产业发展提供有力支持目前,该芯片工艺已达22纳米(即0.000000022米)则数据0.000000022用科学记数法表示为()A0.22107B2.2108C22109D2210108、某病毒直径约为0.0000000089m,其中0.0000000089科学记数法表示
3、为( )ABCD9、在研制新冠肺炎疫苗过程中,某细菌的直径大小为米,用科学记数法表示这一数字,正确的是( )ABCD10、若关于的方程的解是正数,则的取值范围为( )ABC且D且二、填空题(5小题,每小题4分,共计20分)1、计算:(1)0_,(5)2_2、若a,b,c,则a、b、c三个数中最大的数是_3、某种苔藓植物的孢子的直径约为18微米,将“18微米”用科学记数法表示为“米”,其中的值为_(1米=1000000微米)4、已知,则的值是_5、用小数表示应为_三、解答题(5小题,每小题10分,共计50分)1、计算:2、如图是某公司的一份进货单,该公司会计欲查询乙商品的进价,发现进货单已被墨水
4、污染于是,会计向商品采购员和仓库保管员了解情况进货单进价数量(元/件)总金额(件)商品名称(元)甲7200.00乙3200.00商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:李阿姨:我记得甲商品进价比乙商品进价每件高50%;王师傅:甲商品比乙商品的数量多40件请你根据上面的信息,求出乙商品的进价,并帮助他们补全进货单3、计算:(1) (2)解方程组:(1) (2)4、概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如,等类比有理数的乘方,我们把记作,读作“2的圈3次方”,记作,读作“的圈4次方”,一般地,把(n个a,a0)记作,读作“a的圈n次方”(1)直接写出计算
5、结果: , ;(2)试一试,将下列运算结果直接写成幂的形式: ; ; ;(3)想一想:将一个非零有理数a的圈次方写成幂的形式为 ;(4)算一算:5、先化简,再求值:,其中a3-参考答案-一、单选题1、C【分析】利用负整数指数幂:(a0,p为正整数),进而得出答案【详解】解:;故选:C【点睛】此题主要考查了负整数指数幂,正确掌握负整数指数幂的性质是解题关键2、D【分析】先将分式方程化为整式方程,再根据分式方程有增根,得到分式方程中的分母2(x-4)等于0,求出m的值即可【详解】,方程有增根,2(x-4)=0,代入上式中,得到,故选:D【点睛】本题主要考查了根据分式方程的增根确定其方程中字母参数值
6、的问题,属于基础题,难度一般,明白使方程的分母为0的解称为原分式方程的增根是解题关键3、C【分析】根据科学记数法可直接进行求解【详解】解:由题意得:0.0005mm=mm;故选C【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键4、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000785=7.8510-7故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零
7、的数字前面的0的个数所决定5、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000066108,故选:B【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定6、D【分析】根据零指数幂、负指数幂以及乘方的运算求得,比较即可【详解】解:,故选D【点睛】此题考查了零指数幂、负指数幂以及乘方的运算,涉及了有理数大小的比较,解题的关键是根据有关运算,正确求出的值7、B【分
8、析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:0.0000000222.2108故选:B【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值8、B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.0000000
9、089=,故选B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值9、C【分析】用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键10、C【分析】先解分式方程求解,根据方程的解为正数,求出a的范围,然后将方程的增根代入求出,所以a的取值范围是且【详解】解:解方程,得,是方程的增根,当时,解得,即当
10、时,分式方程有增根,a的取值范围是且故选:C【点睛】本题考查了分式方程的解,熟练解分式方程是解题的关键二、填空题1、1 【分析】根据零指数幂、负整数指数幂的运算法则解答即可【详解】解:,故答案为:1,【点睛】本题考查了零指数幂、负整数指数幂,解题的关键是熟练掌握零指数幂、负整数指数幂的运算法则2、a【分析】根据负整数指数幂和零指数幂分别计算,据此可得【详解】解:a,b,c1,a、b、c三个数中最大的数是a,故答案为:a【点睛】本题主要考查有理数的大小比较,解题的关键是熟练掌握负整指数幂和零指数幂3、-5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数
11、法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:18微米=0.000018米=1.810-5米,n=-5,故答案为:-5【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、【分析】根据分式的加减法可得与的关系,在代入代数式求值即可【详解】故答案为:【点睛】本题考查了分式的加减法,掌握分式的加减是解题的关键5、-0.00016【分析】根据负整数指数幂的意义得出,即可求解【详解】解:故答案为【点睛】本题考查了科学记数法,解题关键是熟知:绝对值大于0小于1的数的科
12、学记数法的形式(,n为正整数)中,n为原数从左至右第一个非零数前面0的个数三、解答题1、【分析】根据分式的混合运算法则先将分式的分子和分母因式分解,然后先算乘除,后算加减求解即可【详解】解:原式【点睛】本题考查的是分式混合运算,熟知分式混合运算的法则是解答此题的关键2、乙商品的进价为每件40元,60,120,40,80【分析】设乙商品的进价为x元/件,则甲商品的进价为1.5x元/件,根据数量=总价单价结合购进的甲商品比乙商品多40件,即可得出关于x的分式方程,解之经检验后即可得出x的值,再将其分别代入1.5x,中即可得出结论【详解】解:设乙商品的进价每件为x元,乙的数量为件,则甲商品的进价为每
13、件元,甲的数量为件,根据题意,得解得经检验:是原方程的根,所以,因此,乙商品的进价为每件40元进货单如下:进货单商品名称进价(元/件)数量(件)总金额(元)甲601207200.00乙40803200.00【点睛】3、(1)6;(2)2a+1;(1);(2)【分析】(1)根据有理数的乘方,负整数指数幂,零指数幂的运算法则计算即可;(2)根据多项式乘多项式、平方差公式去括号,然后合并同类项即可(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可【详解】解:(1)原式=4+61=6;(2)原式=a2+3a-a-3-(a2-4)=a2+3a-a-3-a2+4=2a+1(1),把
14、代入得:6y-3+4y=17解得:y=2,把y=2代入得:x=3,则方程组的解为;(2),+得:8x=16,解得:x=2,把x=2代入得:y=1,则方程组的解为【点睛】本题主要考查实数的运算和整式的运算,解二元一次方程组,要牢记零指数幂以及负整数指数幂的计算,整式的运算法则以及消元的思想是解题的关键4、(1),;(2),;(3);(4)【分析】(1)根据“a的圈n次方”的意义计算即可求解;(2)根据“a的圈n次方”的意义化为乘积的形式,再写成乘方的形式即可求解;(3)根据(2)的计算结果得出规律即可求解;(4)根据(3)的规律进行化简,再进行计算【详解】解:(1),;故答案为:,;(2);= ; 故答案为:,;(3);故答案为:;(4)【点睛】本题为新概念问题,考查了乘方运算,幂的意义等知识,读懂题意,理解“a的圈n次方”的意义是解题关键5、,【分析】利用因式分解,分式的乘法,除法运算法则,约分等先化简,后代入求值即可【详解】原式;当a3时,原式【点睛】本题考查了分式的乘除运算,熟练掌握因式分解,约分,运算法则是解题的关键