《2022中考特训浙教版初中数学七年级下册第五章分式综合测评试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022中考特训浙教版初中数学七年级下册第五章分式综合测评试题(含详细解析).docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式综合测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、据成都新闻报道,某种病毒的半径约为5纳米,1纳米109米,则该病毒半径用科学记数法表示为()A5106米B5107米C5108米D5109米2、空气的密度是1.293103g/cm3,用小数把它表示出来是()g/cm3A0.0001293B0.001293C0.01293D0.12933、甲种细胞直径用科学记数法表示为,乙种细胞直径用科学记数法表示为,若甲、乙两种细胞直径的差用科学记数法表示为,则的值为( )
2、A5B6C7D84、下列计算中,正确的是( )ABCD5、下列各式与相等的是( )AB-2C2D6、要使分式有意义,x的取值应满足()Ax1Bx2Cx1且x2Dx1或x27、若关于的方程的解是正数,则的取值范围为( )ABC且D且8、计算:22(1)0( )A4B5CD9、已知(),则分式的值为( )A2B2C3D310、化简的结果是()ABCD1x二、填空题(5小题,每小题4分,共计20分)1、按照如图所示的流程图,若输出的M6,则输入的m是_2、已知,则_3、以下结论:(ab)2(ba)2;(ab)3(ba)3;|ab|ba|;(ab)2a2b2;,其中正确结论的序号为 _4、若a,b,c
3、,则a、b、c三个数中最大的数是_5、已知:(x1)x+31,则整数x的值是_三、解答题(5小题,每小题10分,共计50分)1、计算:2、计算:3、解方程:4、计算:(1)2021|5|+(3.143)0()25、解下列方程(组): (1);(2)2-参考答案-一、单选题1、D【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:5纳米故选:D【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定2、B【分
4、析】把的小数点向左移3位即可【详解】解:故选B【点睛】本题考查了还原科学记数法表示的小数,熟练掌握科学记数法的意义是解题的关键3、D【分析】先求出甲、乙两种细胞直径的差,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:8.051068.031060.021062108故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、A【分析】根据单项式除以单项式、同底数幂的乘法、负
5、指数幂及合并同类项可进行排除选项【详解】解:A、,正确,故符合题意;B、,原计算错误,故不符合题意;C、,原计算错误,故不符合题意;D、,原计算错误,故不符合题意;故选A【点睛】本题主要考查单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项,熟练掌握单项式除以单项式、同底数幂的乘法、负指数幂及合并同类项是解题的关键5、D【分析】根据负指数幂可直接进行求解【详解】解:由题意得:;故选D【点睛】本题主要考查负指数幂,熟练掌握负指数幂的算法是解题的关键6、C【分析】根据分式有意义,分母不等于0列式计算即可得解【详解】解:根据题意得,(x-1)(x-2)0,解得x1且x2故选:C【点睛】本题考查了
6、分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零7、C【分析】先解分式方程求解,根据方程的解为正数,求出a的范围,然后将方程的增根代入求出,所以a的取值范围是且【详解】解:解方程,得,是方程的增根,当时,解得,即当时,分式方程有增根,a的取值范围是且故选:C【点睛】本题考查了分式方程的解,熟练解分式方程是解题的关键8、C【分析】直接利用负指数幂的性质和零指数幂的性质分别化简进而得出答案【详解】解:原式=故选C【点睛】此题主要考查了实数运算,正确化简各数是解题关键9、C【分析】由题意可知x=3y,然后根
7、据因式分解法进行化简,再将x=3y代入原式即可求出答案【详解】解:x-3y=0,x=3y,原式= 故选:C【点睛】本题考查分式的运算,解题的关键是熟练运用因式分解法将分式化简,再把x换成3y10、A【分析】先把分子分母分别分解因式,约去分式的分子与分母的公因式即可【详解】解:,故选:A【点睛】本题考查的是分式的约分,约分约去的是分子分母的公因式,把分子分母分别分解因式是解本题的关键.二、填空题1、2【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m的值,从而可以解答本题【详解】解:当m2-2m0时,解得m=2,经检验,m=2是原方程的解,并且满足m2-2m0;当m2-2m0时,m-3=
8、6,解得m=9,不满足m2-2m0,舍去故输入的m为2故答案为:2【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法2、-1【分析】根据得出,然后根据分式的性质代入即可求解【详解】解:由题意可知,故答案为:-1【点睛】此题考查了绝对值的性质,分式的性质,解题的关键是熟练掌握绝对值的性质,分式的性质3、【分析】根据乘方的意义判断和,根据绝对值的概念判断,根据完全平方公式判断,根据异分母分式减法运算法则判断【详解】解:(ab)2(ba)2(ba)2,正确,故符合题意;(ab)3(ba)3(ba)3,原结论错误,故不符合题意;|ab|(ba)|ba|,正确,故符合题意;(
9、ab)2a22ab+b2,原结论错误,故不符合题意;,原结论错误,故不符合题意;正确结论的序号为,故答案为:【点睛】本题考查绝对值的意义,乘方的运算,分式的加减法,完全平方公式,理解乘方和绝对值的意义,掌握完全平方公式(ab)2a22ab+b2的结构是解题关键4、a【分析】根据负整数指数幂和零指数幂分别计算,据此可得【详解】解:a,b,c1,a、b、c三个数中最大的数是a,故答案为:a【点睛】本题主要考查有理数的大小比较,解题的关键是熟练掌握负整指数幂和零指数幂5、3或2【分析】直接利用零指数幂的性质以及有理数的乘方运算法则计算得出答案【详解】解:(x1)x+31,x30且x10或x11或x1
10、1且x3为偶数,解得:x3或x2,故x3或2故答案为:3或2【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确分类讨论是解题关键三、解答题1、【分析】根据分式的加减混合运算法则先对每一项因式分解,然后通分成同分母分式,然后根据同分母分式加减混合运算法则计算求解即可【详解】解:原式【点睛】此题考查了分式的加减混合运算,解题的关键是熟练掌握分式的加减混合运算法则2、-10【分析】根据正整数指数幂的意义、零指数幂的意义以及绝对值、有理数的乘方运算【详解】解:, , 【点睛】本题考查实数的运算,解题的关键熟练运用零指数幂的意义、正整数指数幂的意义、有理数的乘方以及绝对值3、【分析】方程两边
11、同乘(x3)把分式方程化简为整式方程,解整式方程,最后验根即可【详解】解:经检验:是原方程的解所以原方程的解为【点睛】本题考查了解分式方程,熟练解分式方程的步骤是解答此题的关键注意:单独数字也要乘以最简公因式4、-8【分析】根据有理数的乘方,绝对值,零指数幂和负整数指数幂的计算法则进行求解即可【详解】解: 【点睛】本题主要考查了有理数的乘方,绝对值,零指数幂和负整数指数幂的计算,解题的关键在于能够熟练掌握相关计算法则5、(1);(2)【分析】(1)根据加减消元法解二元一次方程组即可;(2)先左右两边同时乘以最简公分母,将分式方程转化为整式方程,进而求解即可,最后检验【详解】(1)2+,得:;解得,将代入,解得原方程组的解为(2)2解得经检验是原方程的解【点睛】本题考查了加减消元法解二元一次方程组,解分式方程,掌握解方程(组)的方法是解题的关键