《2022年最新沪科版九年级数学下册第24章圆同步测试试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年最新沪科版九年级数学下册第24章圆同步测试试卷(含答案详解).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第24章圆同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB,BC,CD分别与O相切于E、F、G三点,且ABCD,BO3,CO4,则OF的长为()A5BCD2、如图,四
2、边形ABCD内接于O,若ADC=130,则AOC的度数为( )A25B80C130D1003、如图,PA,PB是O的切线,A,B为切点,PA4,则PB的长度为( )A3B4C5D64、如图,AB 为O 的直径,弦 CDAB,垂足为点 E,若 O的半径为5,CD=8,则AE的长为( )A3B2C1D5、如图,都是上的点,垂足为,若,则的度数为( )ABCD6、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD7、平面直角坐标系中点关于原点对称的点的坐标是( )ABCD8、如图,是的直径,、是上的两点,若,则( )A15B20C25D309、下列图形中,是中心对称图形,但不是轴对称图形的
3、是( )ABCD10、如图,AB为的直径,劣弧BC的长是劣弧BD长的2倍,则AC的长为( )ABC3D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把一个正六边形绕其中心旋转,至少旋转_度,可以与自身重合2、如图,AB为O的弦,AOB=90,AB=a,则OA=_,O点到AB的距离=_3、如图,PA,PB分别与O相切于A,B两点,C是优弧AB上的一个动点,若P = 50,则ACB _4、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则BDC的度数为_5、如图,与x轴交于、两点,点P是y
4、轴上的一个动点,PD切于点D,则ABD的面积的最大值是_;线段PD的最小值是_三、解答题(5小题,每小题10分,共计50分)1、如图,已知是的直径,是的切线,C为切点,交于点E,平分(1)求证:;(2)求、的长2、如图,AB是O的直径,弦CDAB于点E,AM是ACD的外角DAF的平分线(1)求证:AM是O的切线;(2)连接CO并延长交AM于点N,若O的半径为2,ANC = 30,求CD的长3、如图,在RtABC中,C90,将ABC绕着点B逆时针旋转得到FBE,点C,A的对应点分别为E,F点E落在BA上,连接AF(1)若BAC40,求BAF的度数;(2)若AC8,BC6,求AF的长4、如图,在平
5、面直角坐标系中,ABC三个顶点的坐标分别为A(0,3),B(3,5),C(4,1)(1)把ABC向右平移3个单位得A1B1C1,请画出A1B1C1并写出点A1的坐标;(2)把ABC绕原点O旋转180得到A2B2C2,请画出A2B2C25、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关系,并证明-参考答案-一、单选题1、D【分析】连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再
6、由三角形的等面积法即可得【详解】解:连接OF,OE,OG,AB、BC、CD分别与相切,且,OB平分,OC平分,SOBC=12OBOC=12BCOF,故选:D【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键2、D【分析】根据圆内接四边形的性质求出B的度数,根据圆周角定理计算即可【详解】解:四边形ABCD内接于O,B+ADC=180,ADC=130,B=50,由圆周角定理得,AOC=2B=100,故选:D【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键3、B【分析】由切线的
7、性质可推出,再根据直角三角形全等的判定条件“HL”,即可证明,即得出【详解】PA,PB是O的切线,A,B为切点,在和中,故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质熟练掌握切线的性质是解答本题的关键4、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度【详解】解:连接OC,如图AB 为O 的直径,CDAB,垂足为点 E,CD=8,;故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出5、B【分析】连接OC根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC
8、,和分别是所对的圆周角和圆心角,故选:B【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键6、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.7、B【分
9、析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键8、C【分析】根据圆周角定理得到BDC的度数,再根据直径所对圆周角是直角,即可得到结论【详解】解:BOC=130,BDC=BOC=65,AB是O的直径,ADB=90,ADC=90-65=25,故选:C【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键9、B【分析】根据“把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形
10、叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键10、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如
11、图,连接, ,是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键二、填空题1、60【分析】正六边形连接各个顶点和中心,这些连线会将360分成6分,每份60因此至少旋转60,正六边形就能与自身重合【详解】3606=60故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键2、 【分析】过O作OC垂直于弦AB,利用垂径定理得到C为AB的中点,然后由OA=OB,且AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由
12、C为AB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OA及AC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离【详解】解:过O作OCAB,则有C为AB的中点,OA=OB,AOB=90,AB=a,根据勾股定理得: OA2+OB2=AB,OA=,在RtAOC中,OA=,AC=AB=,根据勾股定理得:OC=故答案为:;【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题3、【分析】连接,根据切线的性质以及四边形内角和定理求得,进而根据
13、圆周角定理即可求得ACB【详解】解:连接,如图,PA,PB分别与O相切故答案为:【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键4、【分析】先由切线的性质得到OBC=90,再由平行四边形的性质得到BO=BC,则BOC=BCO=45,由OD=OB,得到ODB=OBD,由ODB+OBD=BOC,即可得到ODB=OBD=22.5,即BDC=22.5【详解】解:BC是圆O的切线,OBC=90,四边形ABCO是平行四边形,AO=BC,又AO=BO,BO=BC,BOC=BCO=45,OD=OB,ODB=OBD,ODB+OBD=BOC,ODB=OBD=22.5,即BDC=
14、22.5,故答案为:22.5【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键5、 【分析】根据题中点的坐标可得圆的直径,半径为1,分析以AB定长为底,点D在圆上,高最大为圆的半径,即可得出三角形最大的面积;连接AP,设点,根据切线的性质及勾股定理可得,由其非负性即可得【详解】解:如图所示:当点P到如图位置时,的面积最大,、,圆的直径,半径为1,以AB定长为底,点D在圆上,高最大为圆的半径,如图所示:此时面积的最大值为:;如图所示:连接AP,PD切于点D,设点,在中,在中,则,当时,PD取得最小值,最小值为,故答案为:;【点
15、睛】题目主要考查切线的性质及勾股定理的应用,理解题意,作出相应图形求出解析式是解题关键三、解答题1、(1)90;(2)AC=,DE=1【分析】(1)如图,可知 (2),可求出的长;,可求出的长【详解】解(1)证明如图所示,连接,是直径,是的切线,平分,(2)解,在中,【点睛】本题考查了角平分线、勾股定理、等腰三角形的性质、三角形相似的判定等知识点解题的关键在于判定三角形相似2、(1)见解析(2)CD=2【分析】(1)由题意易得BC=BD,DAM=DAF,则有CAB=DAB,进而可得BAM=90,然后问题可求证;(2)由题意易得CD/AM,ANC=OCE=30,然后可得OE=1,CE=,进而问题
16、可求解(1)证明:AB是O的直径,弦CDAB于点EBC=BDCAB=DABAM是DAF的平分线DAM=DAFCAD+DAF=180DAB+DAM=90即BAM=90,ABAMAM是O的切线(2)解:ABCD,ABAM CD/AMANC=OCE=30在RtOCE中,OC=2OE=1,CE=AB是O的直径,弦CDAB于点ECD=2CE=2【点睛】本题主要考查切线的判定定理、垂径定理及含30度直角三角形的性质,熟练掌握切线的判定定理、垂径定理及含30度直角三角形的性质是解题的关键3、(1)65(2)【分析】(1)根据三角形的内角和定理得到ABC=50,根据旋转的性质得到EBF=ABC=50,AB=B
17、F,根据三角形的内角和定理即可得到结论;(2)根据勾股定理得到AB=10,根据旋转的性质得到BE=BC=6,EF=AC=8,根据勾股定理即可得到结论【小题1】解:在RtABC中,C=90,BAC=40,ABC=50,将ABC绕着点B逆时针旋转得到FBE,EBF=ABC=50,AB=BF,BAF=BFA=(180-50)=65;【小题2】C=90,AC=8,BC=6,AB=10,将ABC绕着点B逆时针旋转得到FBE,BE=BC=6,EF=AC=8,AE=AB-BE=10-6=4,AF=【点睛】本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键4、(1)图见解析;A1(3,3);(2)
18、见解析【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案【详解】解:(1)如图所示:A1B1C1,即为所求,点A1的坐标为:(3,3);(2)如图所示:A2B2C2,即为所求【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键5、(1)20;(2);(3)AF= CF+BF,理由见解析【分析】(1)由ABC是等边三角形,得到AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,则BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)同(1)求解即可;(
19、3)如图所示,将ABF绕点A逆时针旋转60得到ACG,先证明AEFACF得到AFE=AFC,然后证明AFE=AFC=60,得到BFC=120,即可证明F、C、G三点共线,得到AFG是等边三角形,则AF=GF=CF+CG=CF+BF【详解】解:(1)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,AC=AE, ,AB=AE,;(3)AF= CF+BF,理由如下:如图所示,将ABF绕点A逆时针旋转60得到ACG,AF=AG,FAG=60,ACG=ABF,BF=CG在AEF和ACF中,AEFACF(SAS),AFE=AFC,CBF+BCF+BFD+CFD=180,CAF+CFA+ACD+CFD=180,BFD=ACD=60,AFE=AFC=60,BFC=120,BAC+BFC=180,ABF+ACF=180,ACG+ACF=180,F、C、G三点共线,AFG是等边三角形,AF=GF=CF+CG=CF+BF【点睛】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键