2022年沪科版九年级数学下册第24章圆同步测试试卷(精选含答案).docx

上传人:可****阿 文档编号:32530905 上传时间:2022-08-09 格式:DOCX 页数:29 大小:1.89MB
返回 下载 相关 举报
2022年沪科版九年级数学下册第24章圆同步测试试卷(精选含答案).docx_第1页
第1页 / 共29页
2022年沪科版九年级数学下册第24章圆同步测试试卷(精选含答案).docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2022年沪科版九年级数学下册第24章圆同步测试试卷(精选含答案).docx》由会员分享,可在线阅读,更多相关《2022年沪科版九年级数学下册第24章圆同步测试试卷(精选含答案).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是一个含有3个正方形的相框,其中BCDDEF90,AB2,CD3,EF5,将它镶嵌在一个圆形的金属框上,使A,G,

2、 H三点刚好在金属框上,则该金属框的半径是( )ABCD2、下列叙述正确的有( )个.(1)随着的增大而增大;(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;(5)以为三边长度的三角形,不是直角三角形A0B1C2D33、如图,为的直径,为外一点,过作的切线,切点为,连接交于,点在右侧的半圆周上运动(不与,重合),则的大小是( )A19B38C52D764、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步在

3、此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )ABCD5、如图,ABC中,ACB90,ABC40将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )A50B70C110D1206、如图,在中,将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )ABCD7、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD8、如图,在中,将绕点A顺时针旋转60得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )A1B2C3D49、下列图形中,可以

4、看作是中心对称图形的是( )ABCD10、如图,PA,PB是O的切线,A,B是切点,点C为O上一点,若ACB70,则P的度数为( ) A70B50C20D40第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为_2、将点绕x轴上的点G顺时针旋转90后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为_3、如图,在平行四边形中,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为_(结果保留)4、已知如图,AB=8,AC=4,BAC=6

5、0,BC所在圆的圆心是点O,BOC=60,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为_5、把一个正六边形绕其中心旋转,至少旋转_度,可以与自身重合三、解答题(5小题,每小题10分,共计50分)1、如图,在方格纸中,已知顶点在格点处的ABC,请画出将ABC绕点C旋转180得到的ABC(需写出ABC各顶点的坐标)2、如图,在平面直角坐标系中,ABC三个顶点的坐标分别为A(0,3),B(3,5),C(4,1)(1)把ABC向右平移3个单位得A1B1C1,请画出A1B1C1并写出点A1的坐标;(2)把ABC绕原点O旋转180得到A2B2C2,请画出A2B2C23、阅读以下材

6、料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型半角模型可证出多个几何结论,例如:如下图1,在正方形中,以为顶点的,、与、边分别交于、两点易证得大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、三点共线,进而可证明,故任务:如图3,在四边形中,以为顶点的,、与、边分别交于、两点请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由4、如图,AC是O的直径,BC是O的弦,点P是O外一点,连接PB、AB,PBAC(1)求证:PB是O的切线;(2)连接OP,若OPBC,

7、且OP8,O的半径为3,求BC的长5、如图,已知等边内接于O,D为的中点,连接DB,DC,过点C作AB的平行线,交BD的延长线于点E(1)求证:CE是O的切线;(2)若AB的长为6,求CE的长-参考答案-一、单选题1、A【分析】如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.【详解】解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得: 四边形为正方形,则 设 而AB2,CD3,EF5,结合

8、正方形的性质可得:而 又 而 解得: 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.2、D【分析】根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解【详解】当或者时,随着的增大而增大,故(1)不正确;如果直角三角形斜边的长是斜边上的高的4倍

9、,那么这个三角形两个锐角的度数分别是和;,故(2)正确;圆的直径所对的圆周角为直角斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;以为三边长度的三角形,是直角三角形,故(5)错误;故选:D【点睛】本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解3、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三

10、角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.4、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】A是轴对称图形,不是中心对称图形,故此选项不合题意;B不是轴对称图形,是中心对称图形,故此选项不符合题意;C是轴对称图形,也是中心对称图形,故此选项合题意;D不是轴对称图形,也不是中心对称图形,故此选项不合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合5、B【分析】根据旋转可得,得

11、【详解】解:,将绕点逆时针旋转得到,使点的对应点恰好落在边上,故选:B【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质6、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积【详解】解:由图可知:阴影部分的面积=扇形扇形,由旋转性质可知:,在中,有勾股定理可知:,阴影部分的面积=扇形扇形 故选:B【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键7、B【详解】解:A是轴对称图形,不

12、是中心对称图形,故不符合题意;B既是轴对称图形,又是中心对称图形,故符合题意;C不是轴对称图形,是中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合8、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=

13、2【详解】由题意以及旋转的性质知AD=AB,BAD=60ADB=ABDADB+ABD+BAD=180ADB=ABD=60故为等边三角形,即AB= AD =BD=2则CD=BC-BD=4-2=2故选:B【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形9、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心

14、对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心10、D【分析】首先连接OA,OB,由PA,PB为O的切线,根据切线的性质,即可得OAP=OBP=90,又由圆周角定理,可求得AOB的度数,继而可求得答案【详解】解:连接OA,OB,PA,PB为O的切线,OAP=OBP=90,ACB=70,AOB=2P=140,P=360

15、-OAP-OBP-AOB=40故选:D【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用二、填空题1、#【分析】如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可【详解】解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点点C的坐标为(2,2),圆C与x轴相切于点A,点A的坐标为(2,0),OA=OD=2,即O是AD的中点,又M是AB的中点, OM是ABD的中位线,当BD最小时,OM也最小,当B运动到时,BD有最小值,C(

16、2,2),D(-2,0),故答案为:【点睛】本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键2、或【分析】设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标【详解】设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,如图所示:,点A绕点G顺时针旋转90后得到点,轴,轴,在与中,在中,由勾股定理得:,解得:或,或故答案为:,【点睛】本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键3、

17、【分析】过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可【详解】解:过点C作于点H,在平行四边形中,平行四边形的面积为:,图中黑色阴影部分的面积为:,故答案为:【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键4、12【分析】如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题【详解】解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E

18、,交AC于F,此时PEF的周长=PE+PF+EF=EM+EF+FM=MN,当MN的值最小时,PEF的值最小,AP=AM=AN,BAM=BAP,CAP=CAN,BAC=60,MAN=120,MN=AM=PA,当PA的值最小时,MN的值最小,取AB的中点J,连接CJAB=8,AC=4,AJ=JB=AC=4,JAC=60,JAC是等边三角形,JC=JA=JB,ACB=90,BC=,BOC=60,OB=OC,OBC是等边三角形,OB=OC=BC=4,BCO=60,ACH=30,AHOH,AH=AC=2,CH=AH=2,OH=6,OA=4,当点P在直线OA上时,PA的值最小,最小值为-,MN的最小值为(

19、-)=-12故答案:-12【点睛】本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题5、60【分析】正六边形连接各个顶点和中心,这些连线会将360分成6分,每份60因此至少旋转60,正六边形就能与自身重合【详解】3606=60故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键三、解答题1、A(-1,-3),B(1,-1),C(-2,0),画图见解析【分析】先画出点A,B关于点C中心对称的点A,B,再连接A,B,C即可解题【详解】解: A关于点C中心对称的点A(-1,-3),B关于点C中心

20、对称的点B(1,-1),C关于点C中心对称的点C(-2,0),如图,ABC即为所求作图形【点睛】本题考查中心对称图形,是基础考点,掌握相关知识是解题关键2、(1)图见解析;A1(3,3);(2)见解析【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案【详解】解:(1)如图所示:A1B1C1,即为所求,点A1的坐标为:(3,3);(2)如图所示:A2B2C2,即为所求【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键3、成立,证明见解析【分析】根据阅读材料将ADF旋转120再证全等即可求得EF= BE+DF 【详解

21、】解:成立证明:将绕点顺时针旋转,得到,、三点共线,【点睛】本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键4、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长(1)证明:连接,如图所示:是的直径,即,是的切线;(2)解:的半径为,又,即,【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定5、(1)见解析;(2)3【分析】(1)由题意连接OC,OB,由等边三角形的性质可得ABC=BCE=60,求出OCB=30,则OCE=90,结论得证;(2)根据题意由条件可得DBC=30,BEC=90,进而即可求出CE=BC3【详解】解:(1)证明:如图连接OC、OB是等边三角形 又 与O相切; (2)四边形ABCD是O的内接四边形,D为的中点, 【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识解题的关键是正确作出辅助线,利用圆的性质进行求解

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁