《2022年精品解析北师大版七年级数学下册第五章生活中的轴对称专项测评试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年精品解析北师大版七年级数学下册第五章生活中的轴对称专项测评试题(无超纲).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章生活中的轴对称专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图案是轴对称图形的是()ABCD2、在下列四个标志中,是轴对称图形的是( )ABCD3、在下列国际货币符号中,
2、为轴对称图形的是( )ABCD4、如图,在RtABC中,=90,沿着过点B的一条直线BE折叠ABC,使点C恰好落在AB的中点D处,则的度数为( )A30B45C60D755、下列几种著名的数学曲线中,不是轴对称图形的是( )A笛卡尔爱心曲线B蝴蝶曲线C费马螺线曲线D科赫曲线6、下列说法正确的是()A如果两个三角形全等,则它们必是关于某条直线成轴对称的图形B如果两个三角形关于某条直线成轴对称,那么它们是全等三角形C等腰三角形是关于一条边上的中线成轴对称的图形D一条线段是关于经过该线段中点的直线成轴对称图形7、甲骨文是我国的一种古代文字,下列甲骨文中,不是轴对称的是( )ABCD8、下列图形是轴对
3、称图形的是( )ABCD9、如图,将一张长方形纸带沿EF折叠,点C、D的对应点分别为C、D若DEF,用含的式子可以将CFG表示为()A2B90+C180D180210、以下是四个我国杰出企业代表的标志,其中是轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,三角形纸片,沿折叠,使点落在边上的点处,已知三角形的周长是6厘米,三角形的周长为21厘米,则_厘米2、如图,三角形纸片中,沿过点的直线折叠这个三角形,使点落在边上的处,折痕为,则周长为_3、如图,若P为AOB内一点,分别作出P点关于OA、OB的对称点P1、P2,连接P1P2交OA于M,
4、交OB于N,P1P224,则PMN的周长是 _若MPN90,则P1PP2的度数为 _4、如图,MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若MON=38,则GOH=_ 5、如图,把一张三角形纸片(ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DEBC,若B70,则BDF的度数为_三、解答题(5小题,每小题10分,共计50分)1、在44的方格中有五个同样大小的正方形如图摆放,请分别在甲、乙、丙三个图中添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,并画出图形2、如图
5、,长方形纸片,点E,F分别在边上,连接将对折,点B落在直线上的点处,得折痕;将对折,点A落在直线上的点处,得折痕,求的度数3、如图1,在正方形网格中,有5个黑色的小正方形,现要求:移动其中的一个(只能移动一个)小正方形,使5个黑色的小正方形组成一个轴对称图形(范例:如图12所示)请你在图3中画出四个与范例不同且符合要求的图形4、(1)如图1,直线两侧有两点A,B,在直线上求一点C,使它到A、B两点的距离之和最小(作法不限,保留作图痕迹,不写作法)(2)知识拓展:如图2,直线同侧有两点A,B,在直线上求一点C,使它到A,B两点的距离之和最小(作法不限,保留作图痕迹,不写作法)5、已知,如图,等腰
6、直角ABC中,ACB=90,CA=CB,过点C的直线CH和AC的夹角ACH=,请按要求完成下列各题:(1)请按要求作图:作出点A关于直线CH的轴对称点D,连接AD、BD、CD,其中BD交直线CH于点E,连接AE;(2)请问ADB的大小是否会随着的改变而改变?如果改变,请用含的式子表示ADB;如果不变,请求出ADB的大小(3)请证明ACE的面积和BCE的面积满足:-参考答案-一、单选题1、C【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形【详解】解:选项A、B、D均不能找到这样的一条直线,使图形沿一条直线折
7、叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键2、B【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此逐项判断即可【详解】解:A中图形不是轴对称图形,不符合题意;B中图形是轴对称图形,符合题意;C中图形不是轴对称图形,不符合题意;D中图形不是轴对称图形,不符合题意,故选:B【点睛】本题考查轴对称的定义,理解定义,找准对称轴是解答的关键3、C
8、【分析】根据轴对称图形的概念“如果一个图形沿一条直线对折后两部分完全重合,那么这样的图形叫做轴对称图形”逐项判断即可求解【详解】解:A.不是轴对称图形,不合题意;B.不是轴对称图形,不合题意;C.是轴对称图形,符合题意;D.不是轴对称图形,不合题意故选:C【点睛】本题主要考查轴对称图形的意义和辨识,熟练掌握轴对称图形的概念是解题的关键4、A【分析】根据题意可知CBE=DBE,DEAB,点D为AB的中点,EAD=DBE,根据三角形内角和定理列出算式,计算得到答案【详解】解:由题意可知CBE=DBE,DEAB,点D为AB的中点,EA=EB,EAD=DBE,CBE=DBE=EAD,CBE+DBE+E
9、AD=90,A=30,故选:A【点睛】本题考查的是翻折变换的知识,理解翻折后的图形与原图形全等是解题的关键,注意三角形内角和等于1805、C【分析】根据轴对称图形的概念(平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)求解【详解】解:A、是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不符合题意故选:C【点睛】本题考查了轴对称图形的概念,深刻理解轴对称图形的概念是解题关键6、B【分析】根据全等三角形的定义以及轴对称的性质可判断选项A和B;根据等腰三角形的性质可判断选项C;根据线段的性质可判断选项D【
10、详解】解:A如果两个三角形全等,则它们不一定关于某条直线成轴对称的图形,故本选项不合题意;B如果两个三角形关于某条直线成轴对称,那么它们是全等三角形,说法正确,故本选项符合题意;C等腰三角形是以底边中线所在直线为对称轴的轴对称图形或者说等腰三角形被中线所在直线分成的两个三角形成轴对称,故本选项不合题意;D一条线段是关于经过该线段中点且和线段垂直的直线成轴对称的图形,故本选项不合题意;故选:B【点睛】本题考查了轴对称的性质,全等三角形的性质,线段垂直平分线的性质,等腰三角形的性质,关键是掌握性质进行逐一判断7、D【分析】根据轴对称图形的概念分别判断得出答案【详解】解:A、是轴对称图形,故此选项不
11、合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意;故选:D【点睛】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形8、C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:
12、D【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置9、D【分析】由平行线的性质得,由折叠的性质得,计算即可得出答案【详解】四边形ABCD是矩形,长方形纸带沿EF折叠,故选:D【点睛】本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键10、B【详解】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的
13、关键二、填空题1、7.5【分析】首先根据折叠的性质得到,然后根据三角形的周长是6厘米,可求得,根据三角形的周长为21厘米,可求得,即可求出,进而可求出AB的长度【详解】解:三角形纸片,沿折叠,使点落在边上的点处,三角形的周长是6厘米,三角形的周长为21厘米,厘米,厘米,(厘米),厘米,故答案为:7.5【点睛】此题考查了折叠的性质,三角形周长之间的关系,解题的关键是根据折叠的性质得到,2、13【分析】由对折可得:再求解 从而可得答案.【详解】解:由对折可得: 故答案为:【点睛】本题考查的是轴对称的性质,根据轴对称的性质得到是解本题的关键.3、24 【分析】根据轴对称的性质可得,然后根据三角形的周
14、长定义求出的周长为P1P2,从而得解;根据等边对等角可得:,由三角形外角的性质可得:,再根据三角形内角和定理得:,最后依据各角之间得数量关系即可求出答案【详解】解:如图,P点关于OA、OB的对称点P1,P2,的周长,的周长为24;,;故答案为:24;答案为:【点睛】题目主要考查轴对称的性质及等腰三角形的性质,三角形外角和定理等知识点,熟练掌握各知识点间的相互联系,融会贯通综合运用是解题关键4、76【分析】连接OP,根据轴对称的性质可得GOM=MOP,PON=NOH,然后求出GOH=2MON,代入数据计算即可得解【详解】解:如图,连接OP,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,
15、GOM=MOP,PON=NOH,GOH=GOM+MOP+PON+NOH=2MON,MON=38,GOH=238=76故答案为:76【点睛】本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键5、40【分析】利用平行线的性质求出ADE70,再由折叠的性质推出ADEEDF70即可解决问题【详解】解:DEBC,ADEB70,由折叠的性质可得ADEEDF70,BDF180ADE-EDF40,故答案为:40【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键三、解答题1、见解析【分析】根据轴对称图形的性质找出格点即可【详解】解:如图所示【点睛】本题考查的是利用轴对称设计图案,
16、解答此题要明确轴对称的性质,并据此构造出轴对称图形,然后将对称部分涂黑,即为所求2、【分析】根据折叠的性质可以得到 根据平角可得 推出可得最终结果【详解】是由沿NE折叠得到的, 是由沿ME折叠得到的,【点睛】本题主要考查了折叠问题,平角的定义,角的计算,准确找出折叠中重合的角是解题的关键3、画图见解析【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义先确定对称轴,再移动其中一个小正方形即可.【详解】解:如图,【点睛】本题考查的是轴对称图案的设计,确定轴对称图案的对称轴是解本题的关键.4、(1)见解析;(2)见解析【分析】(1)根据两点之间线段最短,连
17、接AB,交已知直线于点C即可;(2)根据两点之间线段最短,作A关于已知直线的对称点E,连接BE交已知直线于C,由此即可得出答案【详解】解:(1)连接AB,交已知直线于点C,则该点C即为所求;(2)作点A关于已知直线的对称点E,连接BE交已知直线于点C,连接AC,BC,则此时C点符合要求【点睛】此题主要考查了平面内最短路线问题求法,熟练掌握轴对称图形的性质是解决本题的关键5、(1)见解析;(2)大小不变,为定值45;(3)见解析【分析】(1)根据题意做出点A关于直线CH的轴对称点D,连接AD、BD、CD即可求解;(2)根据题意证明,然后表示出的度数,然后根据周角表示出的度数,根据表示出的度数,即可求出ADB的度数;(3)首先根据题意证明,得出,然后根据三角形面积的求法表示出即可证明【详解】解:(1)如图所示,(2)大小不变,为定值45A关于直线CH的轴对称点D,CA=CD,ADCH,如图所示,AD与CH交于点M,在和中,又,故大小不变,为定值45;(3)如图所示,过点B作BNCH于点N,由(2)可知,又,为等腰直角三角形,又,在和中,即,故【点睛】此题考查了全等三角形的性质和判定,三角形面积,解题的关键是根据题意表示出和的度数