《2022年浙教版初中数学七年级下册第四章因式分解综合训练试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解综合训练试题(含详细解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第四章因式分解综合训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式从左到右的变形是因式分解为( )A.B.C.D.2、下列多项式因式分解正确的是( )A.B.C.D.3、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解4、已知下列多项式:;.其中,能用完全平方公式进行因式分解的有( )A.B.C.D.5、下列各式从左到右的变形,属于因式分解的是( )A.B.C.D.6、下列各式中,不能用
2、完全平方公式分解因式的是()A.x2+2x+1B.16x2+1C.a2+4ab+4b2D.7、下列四个式子从左到右的变形是因式分解的为()A.(xy)(xy)y2x2B.a2+2ab+b21(a+b)21C.x481y4(x2+9y2)(x+3y)(x3y)D.(a2+2a)28(a2+2a)+12(a2+2a)(a2+2a8)+128、下列等式从左到右的变形,属于因式分解的是( )A.a2b2(ab)(ab)B.a(xy)axayC.x22x1x(x2)1D.(x1)(x3)x24x39、把多项式a39a分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(
3、a+3)(a3)10、下列从左边到右边的变形,属于因式分解的是( )A.B.C.D.11、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)12、若是整数,则一定能被下列哪个数整除( )A.2B.3C.5D.713、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a+1)(a-1)=a2-1B.ab+ac+1=a(b+c)+1C. a2-2a-3=(a-1)(a-3)D.a2-8a+16=(a-4)214、下列分解因式的变形中,正确的是( )A.xy(xy)x(yx)x(y
4、x)(y1)B.6(ab)22(ab)(2ab)(3ab1)C.3(nm)22(mn)(nm)(3n3m2)D.3a(ab)2(ab)(ab)2(2ab)15、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)二、填空题(10小题,每小题4分,共计40分)1、因式分解_2、分解因式:_3、若,则a2bab2_4、若xz2,zy1,则x22xyy2_5、因式分解:x26x_;(3mn)23m+n_6、分解因式:2x3+12x2y+18xy2_7、已知,则_8、因式分解:_9、分解因式:_10、分解因式:3a(xy
5、)2b(yx)_三、解答题(3小题,每小题5分,共计15分)1、某兴趣小组为探究被3整除的数的规律,提出了以下问题:(1)在312,465,522,458中不能被3整除的数是_;(2)一个三位数表示百位、十位、个位上的数字分别是、(,为09之间的整数,且),那么若是3的倍数(设,为正整数),那么能被3整除吗?如果能,请证明;如果不能,请说明理由(3)若一个能被3整除的两位正整数(,为19之间的整数),交换其个位上的数字与十位上的数字得到一个新数,新数减去原数等于54,求这个正整数2、把下面各式分解因式:(1)x24xy4y2;(2)3a2123、因式分解:-参考答案-一、单选题1、D【分析】把
6、一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A. ,属于整式的乘法运算,故本选项错误;B. ,属于整式的乘法运算,故本选项错误;C. 左边和右边不相等,故本选项错误;D. ,符合因式分解的定义,故本选项正确;故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.2、C【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】解:A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. ,故D选项错误,故选C.【点睛】本题考
7、查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.3、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.4、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:不能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;故选:D.【点睛】本题考查了公式法分解因式,掌握a22ab+
8、b2=(ab)2是解题的关键.5、B【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、是把一个单项式转化成两个单项式乘积的形式,故A错误;B、把一个多项式转化成三个整式乘积的形式,故B正确;C、是把一个多项式转化成一个整式和一个分式乘积的形式,故C错误;D、是整式的乘法,故D错误;故选:B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.6、B【分析】根据完全平方公式的结构特征逐项进行判断即可.【详解】解:A.x2+2x+1(x+1)2,因此选项A不符合题意;B.16x2+1在实数范围内不能进
9、行因式分解,因此选项B符合题意;C.a2+4ab+4b2(a+2b)2,因此选项C不符合题意;D.x2x+(x)2,因此选项D不符合题意;故选:B.【点睛】此题考查了用完全平方公式进行因式分解,熟练掌握完全平方公式是解题的关键.7、C【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C选项,符合因式分解的定义,符合题意;故选:C.【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.8、A【分析】把一个多项式化为几个整式的积的
10、形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义逐一判断即可得答案.【详解】A、a2b2(ab)(ab),把一个多项式化为几个整式的积的形式,属于因式分解,故此选项符合题意;B、a(xy)axay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x22x1x(x2)1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x1)(x3)x24x3,是整式的乘法,不是因式分解,故此选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式,叫因式分解;熟练掌握定义是解题关键.9、D【分析】先用提公因式法,再
11、用平方差公式即可完成.【详解】a39aa(a29)a(a+3)(a3).故选:D.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.10、C【分析】根据因式分解的定义判断即可.【详解】解:A,D选项的等号右边都不是积的形式,不符合题意;B选项,x2+4x+4=(x+2)2,所以该选项不符合题意;C选项,x2-2x+1=(x-1)2,符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟练掌握因式分解的定义是解题的关键,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.11、D【分
12、析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.12、
13、A【分析】根据题目中的式子,进行因式分解,根据a是整数,从而可以解答本题.【详解】解:a2+a=a(a+1),a是整数,a(a+1)一定是两个连续的整数相乘,a(a+1)一定能被2整除,选项B、C、D不符合要求,所以答案选A,故选:A.【点睛】本题考查了因式分解的应用,准确理解题意并熟练掌握因式分解的方法是解题的关键.13、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C
14、、a2-2a-3=(a+1)(a-3)分解时出现符号错误,原变形错误,故此选项不符合题意;D、符合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.14、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A、xy(x-y)-x(y-x)=-x(y-x)(y+1),故本选项正确;B、6(a+b)2-2(a+b)=2(a+b)(3a+3b-1),故本选项错误;C
15、、3(n-m)2+2(m-n)=(n-m)(3n-3m-2),故本选项错误;D、3a(a+b)2-(a+b)=(a+b)(3a2+3ab-1),故本选项错误.故选:A.【点睛】本题考查提公因式法分解因式.准确确定公因式是求解的关键.15、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16aa(x28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.二、填空题1、【分析】根据完全平方公式分解因式即可.【详解】解:=【点睛】此题主要考查了公式法分解因式,正确运用乘法公式是解题关键.2、【分析】先提取公因
16、式,再根据平方差公式因式分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了提公因式法和平方差公式,掌握是解题的关键.3、1【分析】直接提取公因式ab,进而分解因式,把已知数据代入得出答案.【详解】解:ab,ab2,a2bab2ab(ab)21.故答案为:1.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.4、9【分析】先根据xz2,zy1可得xy3,再根据完全平方公式因式分解即可求解.【详解】解:xz2,zy1,xzzy21,即:xy3,x22xyy2(xy)29,故答案为:9.【点睛】本题考查了完全平方公式进行因式分解以及整式加减,熟练掌握完全平方公式是解决本题
17、的关键.5、x(x6) (3mn)(3mn1) 【分析】把x26x 中x提取出来即可,给(3mn)23m+n先加括号,然后再运用提取公因式法分解因式即可.【详解】解:x26xx(x6);(3mn)23m+n(3mn)2(3mn)(3mn)(3mn1).故答案为:x(x6),(3mn)(3mn1).【点睛】本题主要考查了提取公因式法分解因式,正确添加括号成为解答本题的关键.6、2x(x+3y)2【分析】首先提取公因式2x,再利用完全平方公式分解因式得出答案.【详解】解:原式2x(x2+6xy+9y2)2x(x+3y)2.故答案为:2x(x+3y)2.【点睛】此题考查的是因式分解,掌握提公因式法和
18、公式法是解题的关键.7、18【分析】本题要求代数式a3b-2a2b2+ab3的值,而代数式a3b-2a2b2+ab3恰好可以分解为两个已知条件ab,(a-b)的乘积,因此可以运用整体的数学思想来解答.【详解】解:a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2当a-b=3,ab=2时,原式=232=18,故答案为:18【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.8、【分析】先提取公因式,然后运用完全平方公式因式分解即可.【详解】解:,故答案为:.【点睛】本题主要考查提公因式因式分解以及公式法因式分解,熟
19、知完全平方公式的结构特点是解题关键.9、【分析】根据提公因式因式分解求解即可.【详解】解:,故答案为:.【点睛】本题考查了提公因式法因式分解,正确找出公因式是解本题的关键.10、【分析】根据提公因式法因式分解即可.【详解】3a(xy)2b(yx)=故答案为:【点睛】本题考查了提公因式法因式分解,正确的计算是解题的关键.三、解答题1、(1)458;(2)能,见解析;(3)39【分析】(1)把各个数除以3即可得出结果;(2)由题意可列出式子,进行整理可得:从而可判断;(3)根据题意可得:,把各个数表示出来代入进行求解,可以得出结果.【详解】解:(1),能被3整除;,能被3整除;,能被3整除;,不能
20、被3整除;故答案为:458;(2)此时能被3整除,证明:若是3的倍数,则令为正整数),则有,故能被3整除;(3)交换后为,由题意得:,有,整理得:,得:,为之间的整数,有,能被3整除,这个正整数是39.【点睛】本题主要考查了因式分解的应用,解答的关键是理解清楚题意,表示出相应两位数或三位数.2、(1)(x2y)2;(2)3(a+2)(a2).【分析】(1)直接用公式法分解即可;(2)先提公因式,再利用平方差公式分解.【详解】解:(1)x24xy4y2(x2y)2;(2)3a2123(a24)3(a+2)(a2).【点睛】本题考查利用公式法和提公因式法分解因式,一般先提公因式,再观察能否用公式法分解因式,公式法是利用完全平方公式和平方差公式.3、【分析】先提取公因式2ab,再利用完全平方公式继续分解即可.【详解】解:原式.【点睛】本题考查提取公因式法以及完全平方公式分解因式,熟练掌握提取公因式法以及完全平方公式分解因式是解题关键.