《2022年最新浙教版初中数学七年级下册第四章因式分解章节训练试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年最新浙教版初中数学七年级下册第四章因式分解章节训练试题(含详细解析).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解章节训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、若是整数,则一定能被下列哪个数整除( )A.2B.3C.5D.72、下列各式中,正确的因式分解是( )A.B.C.D.3、下列各式从左到右的变形中,是因式分解的为( ).A.B.C.D.4、下列等式中,从左往右的变形为因式分解的是()A.a2a1a(a1)B.(ab)(a+b)a2b2C.m2m1m(m
2、1)1D.m(ab)+n(ba)(mn)(ab)5、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.56、下列因式分解正确的是()A.x24(x+4)(x4)B.4a28aa(4a8)C.a2+2a+2(a+1)2+1D.x22x+1(x1)27、已知下列多项式:;.其中,能用完全平方公式进行因式分解的有( )A.B.C.D.8、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:,分别对应下列六个字:勤,博,奋,学,自,主,现将因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主9、下面从左到右的变形中
3、,因式分解正确的是()A.2x24xy2x(x+2y)B.x2+9(x+3)2C.x22x1(x1)2D.(x+2)(x2)x2410、下列因式分解正确的是( )A.x2-4=(x+4)(x-4)B.x2+2x+1=x(x+2)+1C.3mx-6my=3m(x-6y)D.x2y-y3=y(x+y)(x-y)11、的值为( )A.B.C.D.35312、下列多项式因式分解正确的是( )A.B.C.D.13、下列各式由左到右的变形中,属于因式分解的是()A.a2abac=a(a+b+c )B.x2+x+1=(x+1)2xC.(x+2)(x1)=x2+x2D.a2+b2=(a+b)22ab14、下列
4、各选项中因式分解正确的是( )A.x21(x1)2B.a32a2aa2(a2)C.2y24y2y(y2)D.a2b2abbb(a1)215、下列式子的变形是因式分解的是( )A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、若,则_2、若多项式x2+ax+b可分解为(x+1)(x+4),则a_,b_3、若,则_4、多项式的公因式是_5、若,则a2bab2_6、dx42x3+x210x4,则当x22x40时,d_7、如果(a+ )2a2+6ab+9b2,那么括号内可以填入的代数式是 _(只需填写一个)8、分解因式:_9、分解因式:x2y6xy9y_10、分解因式:3mn212m2
5、n_三、解答题(3小题,每小题5分,共计15分)1、如果一个正整数的各位数字都相同,我们称这样的数为“同花数”,比如:,对任意一个三位数,如果满足各数位上的数字互不相同,且都不为零,那么称这个数为“异花数”将一个“异花数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和记为如,对调百位与十位上的数字得到,对调百位与个位上的数字得到,对调十位与个位上的数字得到这三个新三位数的和,是一个“同花数”(1)计算:,并判断它们是否为“同花数”;(2)若是“异花数”,证明:等于的各数位上的数字之和的倍;(2)若“数”(中、都是正整数,),且为最大的三位“同花数”,求的值2、教科书
6、中这样写道:“我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方,再减去这个项,使整个式子的值不变,这种方法叫做配方法配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求最值问题例如:分解因式x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);例如求代数式2x2+4x-6=2(x+1)2-8,当x= -1时,2x2+4x-6有最小值,最小值是-8,根据阅读材料用配方法解
7、决下列问题:(1)分解因式:m2-4m-5=(2)当a,b为何值时,多项式2a2+3b2-4a+12b+18有最小值,求出这个最小值(3)当a,b为何值时,多项式a2 - 4ab+5b2 - 4a+4b+27有最小值,并求出这个最小值3、若一个三位数(其中a、b、c不全相等且都不为0),重新排列各数位上的数字可得到一个最大数和一个最小数,此最大数和最小数的差叫做原数的差数,记为例如,536的差数(1)_,_;(2)若一个三位数(其中且都不为0),求证:能被99整除;(3)若s、t是各数位上的数字均不为0且互不相等两个三位自然数,s的个位数字为1,十位数字是个位数字的3倍,百位数字为x,t的百位
8、数字为y,十位数字是百位数字的2倍,t的个位数字与s的百位数字相同(,),若能被3整除,能被11整除,求的值-参考答案-一、单选题1、A【分析】根据题目中的式子,进行因式分解,根据a是整数,从而可以解答本题.【详解】解:a2+a=a(a+1),a是整数,a(a+1)一定是两个连续的整数相乘,a(a+1)一定能被2整除,选项B、C、D不符合要求,所以答案选A,故选:A.【点睛】本题考查了因式分解的应用,准确理解题意并熟练掌握因式分解的方法是解题的关键.2、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题
9、意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.3、B【分析】根据因式分解的定义把一个多项式化成几个整式的积的形式,叫因式分解.然后对各选项逐个判断即可.【详解】解:A、两因式之间用加号连结,是和的形式不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、将积化为和差形式,是多项式乘法运算,不是因式分解,故本选项不符合题意;D、两因式之间用加号连结,是和的形式,不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键 .4、D【分析】把一个多项式化为几
10、个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.5、C【分析】根据十
11、字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.6、D【分析】各式分解得到结果,即可作出判断.【详解】解:A、原式(x+2)(x2),不符合题意;B、原式4a(a2),不符合题意;C、原式不能分解,不符合题意;D、原式(x1)2,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分
12、解的方法是解本题的关键.7、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:不能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;故选:D.【点睛】本题考查了公式法分解因式,掌握a22ab+b2=(ab)2是解题的关键.8、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结合已知即可求解.【详解】解:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),由已知可
13、得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.9、A【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、把一个多项式转化成两个整式乘积的形式,故A正确;B、等式不成立,故B错误;C、等式不成立,故C错误;D、是整式的乘法,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.10、D【分析】根据提公因式法、公式法逐项进行因式分解,再进行判断即可.【详解】解:A.x2-4=(x+2)(x-2),因此选项A不符合题意;B.x2+
14、2x+1=(x+1)2,因此选项B不符合题意;C.3mx-6my=3m(x-2y),因此选项C不符合题意;D.x2y-y3=y(x2-y2)=y(x+y)(x-y),因此选项D符合题意;故选:D.【点睛】本题考查提公因式法、公式法分解因式,掌握a2-b2=(a+b)(a-b),a22ab+b2=(ab)2是正确应用的前提.11、D【分析】观察式子中有4次方与4的和,将因式分解,再根据因式分解的结果代入式子即可求解【详解】原式故答案为:【点睛】本题考查了因式分解的应用,找到是解题的关键.12、C【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】解:A.
15、,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. ,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.13、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;、没把一个多项式转化成几个整式积,故不符合题意;、是整式的乘法,故C不符合题意;、没把一个多项式转化成几个整式积,故不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.14、D【分析】因式分解是将一
16、个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A、,选项错误;B、,选项错误;C、 ,选项错误;D、,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.15、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,由此结合选项即可作出判断.【详解】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、是因式分解,故本选项正确;故正确的选项为:D【点睛】本题的关键是理解因式分解的定义:把一个多
17、项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,属于基础题.二、填空题1、2022【分析】根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.【详解】故填“2022”.【点睛】本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.2、5 4 【分析】把(x+1)(x+4)展开,合并同类项,可确定a、b的值.【详解】解:(x+1)(x+4),=,=,;故答案为:5,4.【点睛】本题考查了因式分解和多项式乘多项式,解题关键是熟练运用多项式的乘法法则进行计算,取得字母的值.3、3【分析】利用因式分解求出的值,再代入中即可
18、.【详解】解:,取或,将的值,再代入中,故答案是:.【点睛】本题考查了因式分解,解题的关键是利用十字交叉相乘法进行因式分解,求出.4、【分析】找出多项式中各单项式的公共部分即可.【详解】解:多项式的公因式是:,故答案为:.【点睛】本题主要考查公因式的概念,找出多项式中各单项式的公共部分是解题的关键.5、1【分析】直接提取公因式ab,进而分解因式,把已知数据代入得出答案.【详解】解:ab,ab2,a2bab2ab(ab)21.故答案为:1.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.6、16【分析】先将x22x4=0化为x22x=4,再将d化为x2(x22x)+x22x
19、8x4后整体代入计算可求解.【详解】解:x22x40,x22x4,dx42x3+x210x4x2(x22x)+x22x8x44x2+48x44(x22x)16.故答案为:16.【点睛】本题主要考查因式分解的应用,将d化x2(x22x)+x22x8x4是解题的关键.7、3b【分析】先根据展开式三项进行公式化变形,利用因式分解公式得出因式分解结果,再反过来即可得解.【详解】解:a2+6ab+9b2= a2+2a3b+(3b)2=(a+3b)2,(a+3b )2a2+6ab+9b2,故答案为3b.【点睛】本题考查多项式的乘法公式,可反过来用因式分解公式来求解是解题关键.8、【分析】根据分解因式的步骤
20、,先提取公因式再利用完全平方公式分解即可.【详解】解:,故答案为: .【点睛】本题主要考查了因式分解,熟悉掌握因式分解的方法是解题的关键.9、【分析】根据因式分解的方法求解即可.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.【详解】解:x2y6xy9y故答案为:.【点睛】此题考查了分解因式,解题的关键是熟练掌握分解因式的方法.分解因式的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.10、3mn(n4m)【分析】根据提公因式法进行分解即可.【详解】3mn212m2n=3mn(n4m).故答案为:3mn(n4m).【点睛】本题考查了因式分解,掌握提公因
21、式法分解因式是解题的关键.三、解答题1、(1)是同花数;不是同花数;(2)见解析;(3)为162或153或135或126【分析】(1)由“同花数”定义,计算即可得到答案;(2)百位数的表示方法;(2)由“异花数”的定义,为最大的三位“称心数”得且,计算的值为162或153或135或126.【详解】解:(1),是同花数;,不是同花数;(2)若是“异花数”,(其中均为小于10的正整数),等于的各数位上的数字之和的;()异花数” ,又,为正整数),为最大的三位“同花数”,且,、取值如下:或或或,由上可知符合条件三位“异花数”为162或153或135或126.【点睛】本题考查了新定义问题,解题的关键是
22、读懂新定义“同花数”和“异花数”.2、(1);(2)当,时,最小值为4;(3)当,时,最小值为19.【分析】(1)根据阅读材料,先将变形为,再根据完全平方公式写成,然后利用平方差公式分解即可;(2)利用配方法将多项式转化为完全平方式,然后利用非负数的性质进行解答;(3)利用配方法将多项式转化为完全平方式,然后利用非负数的性质进行解答.【详解】解:(1).故答案为;(2),当,时,有最小值,最小值为4;(3),当,时,多项式有最小值19.【点睛】本题考查了因式分解的应用,完全平方公式、以及非负数的性质,解题的关键是熟练掌握因式分解的方法.3、(1)396,495;(2)见解析;(3)495【分析】(1)根据的定义求解即可;(2)先根据的定义,求出关于,的代数式,即可证明它能被99整除;(2)先列出,的代数式,根据能被3整除,能被11整除确定,的值,再根据的定义求解即可【详解】解:(1),故答案为:396,495;(2)且都不为0,能被99整除;(3)由题意,能被3整除,4,7当时,、是各数位上的数字均不为0且互不相等,不符合题意,舍去当时,能被11整除,即,、是各数位上的数字均不为0且互不相等,不符合题意,舍去当时,能被11整除,即,.【点睛】本题考查的是因式分解的应用,解题的关键是掌握对数字拆分组合的能力,这类题目多需要根据题设进行讨论求解.