2022年强化训练沪教版七年级数学第二学期第十四章三角形章节训练试题(含答案解析).docx

上传人:可****阿 文档编号:32547666 上传时间:2022-08-09 格式:DOCX 页数:35 大小:814.21KB
返回 下载 相关 举报
2022年强化训练沪教版七年级数学第二学期第十四章三角形章节训练试题(含答案解析).docx_第1页
第1页 / 共35页
2022年强化训练沪教版七年级数学第二学期第十四章三角形章节训练试题(含答案解析).docx_第2页
第2页 / 共35页
点击查看更多>>
资源描述

《2022年强化训练沪教版七年级数学第二学期第十四章三角形章节训练试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练沪教版七年级数学第二学期第十四章三角形章节训练试题(含答案解析).docx(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点F,C在BE上,ACDF,BFEC,ABDE,AC与DF相交于点G,则与2DFE相等的是()AA+DB

2、3BC180FGCDACE+B2、如图,ADBC,C30,ADB:BDC1:2,EAB72,以下四个说法:CDF30;ADB50;ABD22;CBN108其中正确说法的个数是()A1个B2个C3个D4个3、下列命题是真命题的是( )A等腰三角形的角平分线、中线、高线互相重合B一个三角形被截成两个三角形,每个三角形的内角和是90度C有两个角是60的三角形是等边三角形D在ABC中,则ABC为直角三角形4、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)()若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是( )ABCD5、下列长度的三条线段能组成三角形的是( )A3

3、,4,7B3,4,8C3,4,5D3,3,76、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C10D127、以下长度的三条线段,能组成三角形的是( )A2,3,5B4,4,8C3,4.8,7D3,5,98、如图,A,DBC3DBA,DCB3DCA,则BDC的大小为( )ABCD9、如图,直线l1l2,被直线l3、l4所截,并且l3l4,146,则2等于()A56B34C44D4610、下列所给的各组线段,能组成三角形的是:( )A2,11,13B5,12,7C5,5,11D5,12,13第卷(非选择题 70分)二、填空题(5小题,每

4、小题4分,共计20分)1、如图,在ABC中,ACB=90,AC=BC,BECE于点E,ADCE于点D若AD=3cm,BE=1cm,则DE=_2、如图,ABC的面积等于35,AEED,BD3DC,则图中阴影部分的面积等于 _ 3、若一条长为24cm的细线能围成一边长等于9cm的等腰三角形,则该等腰三角形的腰长为_cm4、若等腰三角形两底角平分线相交所形成的钝角是128,则这个等腰三角形的顶角的度数是_5、ABC的高AD所在直线与高BE所在直线相交于点F且DFCD,则ABC_三、解答题(10小题,每小题5分,共计50分)1、已知:如图,AD,BE相交于点O,ABBE,DEAD,垂足分别为B,D,O

5、A=OE求证:ABOEDO2、已知:在ABC中,AD平分BAC,AE=AC求证:ADCE3、如图,在中,AD平分,于点E求证:4、探究与发现:如图,在ABC中,BC45,点D在BC边上,点E在AC边上,且ADEAED,连接DE(1)当BAD60时,求CDE的度数;(2)当点D在BC(点B、C除外)边上运动时,试猜想BAD与CDE的数量关系,并说明理由(3)深入探究:如图,若BC,但C45,其他条件不变,试探究BAD与CDE的数量关系5、已知POQ=120,点A,B分别在OP,OQ上,OAOB,连接AB,在AB上方作等边ABC,点D是BO延长线上一点,且AB=AD,连接AD(1)补全图形;(2)

6、连接OC,求证:COP=COQ;(3)连接CD,CD交OP于点F,请你写出一个DAB的值,使CD=OB+OC一定成立,并证明6、如图,在ABC中,BAC90,ABAC,射线AE交BC于点P,BAE15;过点C作CDAE于点D,连接BE,过点E作EFBC交DC的延长线于点F(1)求F的度数;(2)若ABE75,求证:BECF7、如图,在长方形ABCD中,AD=3,DC=5,动点M从A点出发沿线段ADDC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CDDA以每秒3个单位长度的速度向终点A运动MEPQ于点E,NFPQ于点F,设运动的时间为秒(1)在运动过程中当M、N两点相遇时,求

7、t的值(2)在整个运动过程中,求DM的长(用含t的代数式表示)(3)当DEM与DFN全等时,请直接写出所有满足条件的DN的长8、已知,AD,BC平分ABD,求证:ACDC9、如图,将一副直角三角板的直角顶点C叠放在一起(1)如图(1),若DCE33,则BCD ,ACB (2)如图(1),猜想ACB与DCE的大小有何特殊关系?并说明理由(3)如图(2),若是两个同样的直角三角板60锐角的顶点A重合在一起,则DAB与CAE的数量关系为 10、周老师带领同学们在数学课上探究下面命题的正确性:顶角为36的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形为此,请你完成下列问题

8、:(1)已知:如图,在中,直线BD平分交AC于点D求证:与都是等腰三角形;(2)在证明了该命题后,小尹同学发现:图、两个等腰三角形也具有这种特性,请你在图、图中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小尹又发现:还有一些非等腰三角形也具有这样的特性:即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形,请你画出一个具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征-参考答案-一、单选题1、C【详解】由题意根据等式的性质得出BCEF,进而利用SSS证明ABC与

9、DEF全等,利用全等三角形的性质得出ACBDFE,最后利用三角形内角和进行分析解答【分析】解:BFEC,BF+FCEC+FC,BCEF,在ABC与DEF中,ABCDEF(SSS),ACBDFE,2DFE180FGC,故选:C【点睛】本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法)2、D【分析】根据ADBC,C30,利用内错角相等得出FDC=C=30,可判断正确;根据邻补角性质可求ADC=180-FDC=180-30=150,根据ADB:BDC1:2,得出方程3ADB=150,解方程可判断正确;根据EAB72,可求邻补角

10、DAN=180-EAB=180-72=108,利用三角形内角和可求ABD=180-NAD-ADB=180-108-50=22可判断正确,利用ADBC,同位角相等的CBN=DAN=108可判断正确即可【详解】解:ADBC,C30,FDC=C=30,故正确;ADC=180-FDC=180-30=150,ADB:BDC1:2,BDC=2ADB,ADC=ADB+BDC=ADB+2ADB=3ADB=150,解得ADB=50,故正确EAB72,DAN=180-EAB=180-72=108,ABD=180-NAD-ADB=180-108-50=22,故正确ADBC,CBN=DAN=108,故正确其中正确说法

11、的个数是4个故选择D【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键3、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180,故此选项错误;C.有两个角是60,则第三个角为,所以三角形是等边三角形,故此选项正确;D.设,则,故,解得,所以,此三角形不是直角三角形,故此选项错误故选:C【点睛】本题考查等腰三角形的性质,直角三角形的定义

12、以及三角形内角和,掌握相关概念是解题的关键4、B【分析】过点作轴于,由“”可证,可得,即可求解【详解】解:如图,过点作轴于,点,是等腰直角三角形,且,在和中,故选:B【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形5、C【分析】根据组成三角形的三边关系依次判断即可【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误B、 3,4,8中3+48,故不能组成三角形,与题意不符,选项错误C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确D、 3,3,7中3+37,

13、故不能组成三角形,与题意不符,选项错误故选:C【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边6、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型7、C【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可【详解】解:A、2

14、+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.87,能组成三角形,符合题意;D、3+59,不能组成三角形,不符合题意故选:C【点睛】本题主要考查对三角形三边关系的理解应用注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可8、A【分析】根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解【详解】解:A,DBC3DBA,DCB3DCA,设,即故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键9、C【分析】依据l1l2,即可得到3146,再根据l3l4,可得2904644【

15、详解】解:如图:l1l2,146,3146,又l3l4,2904644,故选:C【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是18010、D【分析】根据三角形三边关系定理,判断选择即可【详解】2+11=13,A不符合题意;5+7=12,B不符合题意;5+5=1011,C不符合题意;5+12=1713,D符合题意;故选D【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键二、填空题1、2cm【分析】易证CAD=BCE,即可证明BECDAC,可得CD=BE,CE=AD,根据DE=CE-CD,即可解题【详解】解:ACB=90,B

16、CE+DCA=90ADCE,DAC+DCA=90BCE=DAC,在BEC和DAC中,BCE=DAC,BEC=CDA=90BC=AC,BECDAC(AAS),CE=AD=3cm,CD=BE=1cm,DE=CE-CD=3-1=2 cm故答案是:2cm【点睛】此题是三角形综合题,主要考查了全等三角形的判定,全等三角形对应边相等的性质,本题中求证CDABEC是解题的关键2、15【分析】连接DF,根据AEED,BD3DC,可得 , ,然后设AEF的面积为x,BDE的面积为y,则,再由ABC的面积等于35,即可求解【详解】解:如图,连接DF, AEED, ,BD3DC, ,设AEF的面积为x,BDE的面积

17、为y,则,ABC的面积等于35, ,解得: 故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到 , ,是解题的关键3、9或7.5或9【分析】分9是底边和腰长两种情况,分别列出方程,求解即可得到结果【详解】解:若9cm为底时,腰长应该是(24-9)=7.5cm,故三角形的三边分别为7.5cm、7.5cm、9cm,7.5+7.5=159,故能围成等腰三角形;若9cm为腰时,底边长应该是24-92=6,故三角形的三边为9cm、9cm、6cm,6+9=159,以9cm、9cm、6cm为三边能围成三角形,综上所述,腰长是9cm或7.5cm,故答案为:9或7.5【点睛】本题考查了

18、等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键4、【分析】先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可【详解】解:BOC128,OBC+OCB180BOC18012852,BO平分ABC,CO平分ACB,ABC+ACB2(OBC+OCB)104,A180(ABC+ACB)18010476故答案为:76【点睛】本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是是解决本题的关键5、45或135【分析】根据题意,分两种情况讨论:当为锐角三角形时;当为钝角三角形时;作出相应图形,

19、然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得【详解】解:如图所示:当为锐角三角形时,在BDF与中,BDFADC,;如图所示:当为钝角三角形时,在BDF与中,BDFADC,综合可得:为或,故答案为:或【点睛】题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键三、解答题1、见解析【分析】利用AAS即可证明ABOEDO【详解】证明:ABBE,DEAD,B=D=90在ABO和EDO中,ABOEDO【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键2、见解析【分析】先根据角平分线的定义得到BAD=B

20、AC,再根据等腰三角形的性质和三角形外角定理得到E=BAC,从而得到BAD=E,即可证明ADCE【详解】解:AD平分BAC,BAD=BAC,AE=AC,E=ACE,E+ACE=BAC,E=BAC,BAD=E,ADCE【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键3、证明见解析.【分析】延长CE交AB于F,求出AECAEF,FAECAE,根据ASA证FAECAE,推出ACEAFC,根据三角形外角性质得出AFCBECD,代入即可【详解】证明:延长CE交AB于F,CEAD,AECAEF,AD平分BAC,FAECAE,在FAE和CAE

21、中, ,FAECAE(ASA),ACEAFC,AFCBECD,ACEBECD【点睛】本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出AFCACE4、(1)30;(2)BAD2CDE,理由见解析;(3)BAD2CDE【分析】(1)根据三角形的外角的性质求出ADC,结合图形计算即可;(2)设BADx,根据三角形的外角的性质求出ADC,结合图形计算即可;(3)设BADx,仿照(2)的解法计算【详解】解:(1)ADC是ABD的外角,ADCBAD+B105,DAEBACBAD30,ADEAED75,CDE1057530;(2)BAD2CDE,理由如下:设BADx,ADCB

22、AD+B45+x,DAEBACBAD90x,ADEAED,CDE45+xx,BAD2CDE;(3)设BADx,ADCBAD+BB+x,DAEBACBAD1802Cx,ADEAEDC+x,CDEB+x(C+x)x,BAD2CDE【点睛】本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系5、(1)见解析;(2)见解析;(3)DAB=150,见解析【分析】(1)依据题意作出相应图形即可;(2)在BQ上截取BE=AO,连接CE,由等边三角形的性质得,CA=CB,ACB=60由同角的补角相等得CAO=CBE,由SAS证得CAO和CBE全等,即可

23、得证;(3)由DAB=150, DA=AB,得ADB=ABD=15,由等边三角形性质,可得CAB=CBA=ACB =60,故CAD=150,由等边对等角得ADC=ACD=15,由此DBC=DCB=75,由等角对等边得DB=DC 再由POQ=120,BDC=30,得DFO=90,等量代换即可得证.【详解】解:(1)如图所示:(2)证明如下:在BQ上截取BE=AO,连接CE,ABC为等边三角形,CA=CB,ACB=60POQ=120,CAO+CBO=180CBO+CBE=180,CAO=CBE,在CAO和CBE中,CAOCBE(SAS),CO=CE,COA=CEB,COE=CEB,COP=COQ;

24、 (3)DAB=150,如图:DAB=150, DA=AB,ADB=ABD=15ABC为等边三角形,CAB=CBA=ACB =60,CAD=150,AD=AC,ADC=ACD=15,DBC=DCB=75,DB=DC,POQ=120,BDC=30,DFO=90AD=AC,DF=FCDO=OC DB=DO+OB,DB=CO+OB,CD= OB + OC.【点睛】此题考查全等三角形的判定和性质、等腰三角形的判定和性质,等边三角形的判定和性质,以及添加辅助线构造全等三角形,掌握相应的判定和性质是解答此题的关键.6、(1);(2)证明见详解【分析】(1)根据三角形内角和及等腰三角形的性质可得,由各角之间

25、的关系及三角形内角和定理可得,最后由平行线的性质即可得出;(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明【详解】解:(1),;(2),由(1)可得,(内错角相等,两直线平行)【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键7、(1)2;(2)当0t3时,DM=3-t,当3t8时,DM=t-3;(3)2或1【分析】(1)根据题意得: ,解得:,即可求解;(2)根据题意得:当0t3时,AM=t,则DM=3-t,当3t8时,DM=t-3,即可求解;(3)根据MEPQ,NFPQ,可得DEM=DFN=90,再由ADC=90,可得DME

26、 =FDN,从而得到当DEM与DFN全等时,DM=DN,根据题意可得M到达点D时, ,M到达点C时, ,N到达点D时, ,N到达点A时,然后分两种情况:当时和当时,即可求解【详解】解:(1)根据题意得: ,解得:,即在运动过程中当M、N两点相遇时,t的值为2;(2)根据题意得:当0t3时,AM=t,则DM=3-t,当3t8时,DM=t-3;(3)MEPQ,NFPQ,DEM=DFN=90,EDM+ DME =90,ADC=90,EDM+FDN =90,DME =FDN,当DEM与DFN全等时,DM=DN,M到达点D时, ,M到达点C时, ,N到达点D时, ,N到达点A时,当时,DM=3-t,CN

27、=3t,则DN=5-3t,3-t=5-3t,解得:t=1,此时DN=5-3t=2,当时,DM=3-t,DN=3t-5,3-t=3t-5,解得: ,DN=3t-5=1,综上所述,当DEM与DFN全等时,所有满足条件的DN的长为2或1【点睛】本题主要考查了全等三角形的判定和性质,动点问题,利用分类讨论思想解答是解题的关键8、见解析【分析】证明BACBDC即可得出结论【详解】解:BC平分ABD,ABCDBC,在BAC和BDC中,BACBDC,ACDC【点睛】本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质9、(1)57,147;(2)ACB180D

28、CE,理由见解析;(3)DAB+CAE120【分析】(1)根据角的和差定义计算即可(2)利用角的和差定义计算即可(3)利用特殊三角板的性质,角的和差定义即可解决问题【详解】解:(1)由题意,;故答案为:57,147 (2)ACB180DCE, 理由如下: ACE90DCE,BCD90DCE, ACBACEDCEBCD90DCEDCE90DCE180DCE (3)结论:DAB+CAE=120理由如下:DAB+CAE=DAE+CAE+BAC+CAE=DAC+EAB,又DAC=EAB=60,DAB+CAE=60+60=120故答案为:DAB+CAE=120【点睛】本题考查三角形的内角和定理,角的和差

29、定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型10、(1)见详解;(2)见详解;(3)见详解;(4)见详解;【分析】(1)根据等边对等角,及角平分线定义易得1=2=36,C=72,那么BDC=72,则可得AD=BD=CB,所以ABD与DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108的角分为36和72即可;(3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式(1)证明:在ABC中,AB=AC,ABC=C,A=36,ABC=C=(180-A)=72,BD平分ABC,1=2=363=1+A=72,1=A,3=C,AD=BD,BD=BC,ABD与BDC都是等腰三角形(2)解:如下图所示:(3)解:如图所示:(4)解:特征一:直角三角形(直角边不等);特征二:2倍内角关系,在ABC中,A=2B,0B45,其中,B30;【点睛】本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁