2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项测评试题(无超纲).docx

上传人:知****量 文档编号:28168886 上传时间:2022-07-26 格式:DOCX 页数:23 大小:410.36KB
返回 下载 相关 举报
2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项测评试题(无超纲).docx_第1页
第1页 / 共23页
2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项测评试题(无超纲).docx_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项测评试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化京改版八年级数学下册第十五章四边形专项测评试题(无超纲).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十五章四边形专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点

2、C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D42、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直的四边形3、已知中,CD是斜边AB上的中线,则的度数是( )ABCD4、一个多边形纸片剪去一个内角后,得到一个内角和为2340的新多边形,则原多边形的边数为( )A14或15或16B15或16或17C15或16D16或175、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A6B6.5C10D136、下列图形中,既是中心对称图

3、形又是轴对称图形的有几个()A1个B2个C3个D4个7、如图,菱形OABC在平面直角坐标系中的位置如图所示,AOC45,OA,则点C的坐标为()A(,1)B(1,1)C(1,)D(+1,1)8、下列几何图形既是轴对称图形又是中心对称图形的是( )ABCD9、下列图案中,是中心对称图形的是( )ABCD10、下列A:B:C:D的值中,能判定四边形ABCD是平行四边形的是( )A1:2:3:4B1:4:2:3C1:2:2:1D3:2:3:2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个凸边形的边数与对角线条数的和小于20,且能被5整除,则_2、点P(1,2)关于原点中

4、心对称的点的坐标为_3、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 _4、如图,在菱形纸片ABCD中,AB2,A60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cosEFG的值为_5、若点A(m,5)与点B(4,n)关于原点成中心对称,则mn_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,过点作于点,点在边上,连接,(1)求证:四边形是矩形;(2)若,求证:平分2、在RtABC中,ACB90,ACBC,点D为AB边上一点,过点D作DEAB,交BC于点E,连接AE,取AE的中点P,连接DP,CP(1)观察猜想: 如图(1

5、),DP与CP之间的数量关系是 ,DP与CP之间的位置关系是 (2)类比探究: 将图(1)中的BDE绕点B逆时针旋转45,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明;若不成立,请说明理由(3)问题解决: 若BC3BD3, 将图(1)中的BDE绕点B在平面内自由旋转,当BEAB时,请直接写出线段CP的长3、如图,是的中位线,延长到,使,连接求证:4、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为_5、如图,在中

6、,AE平分,于点E,点F是BC的中点(1)如图1,BE的延长线与AC边相交于点D,求证:(2)如图2,中,求线段EF的长-参考答案-一、单选题1、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD

7、=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键2、B【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故选:B【点睛】此题考查了完全平

8、方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键3、B【分析】由题意根据三角形的内角和得到A=36,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论【详解】解:ACB=90,B=54,A=36,CD是斜边AB上的中线,CD=AD,ACD=A=36.故选:B【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键4、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180=2340

9、,解得:n=15,若截去一个角后边数增加1,则原多边形边数为14,若截去一个角后边数不变,则原多边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故选:A【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)180(n为边数)是解题的关键5、B【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解【详解】解:直角三角形两直角边长为5和12,斜边,此直角三角形斜边上的中线的长6.5故选:B【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题

10、的关键6、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:A【点睛】本题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合7、B【分析】作CDx轴,根据菱形的性质得到OC=OA=,在RtOCD中,根据勾股定理求出OD的值

11、,即可得到C点的坐标【详解】:作CDx轴于点D,则CDO=90,四边形OABC是菱形,OA=,OC=OA=,又AOC=45,OCD=90-AOC=90-45=45,DOC=OCD,CD=OD,在RtOCD中,OC=,CD2+OD2=OC2,2OD2=OC2=2,OD2=1,OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键8、D【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、不是轴对称图形,是中心对称图形,选项说法错误,不符合题意;B、是

12、轴对称图形,不是中心对称图形,选项说法错误,不符合题意;C、是轴对称图形,不是中心对称图形,选项说法错误,不符合题意;D、是轴对称图形,是中心对称图形,选项说法正确,符合题意;故选D【点睛】本题考查了中心对称图形与轴对称图形的概念解题的关键是掌握轴对称图形寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合9、B【分析】由题意依据一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可【详解】解:A、C、D都是轴对称图形,只有B选项是中心对称图形.故选:B.【点睛】本题考查中心对称图形的识

13、别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合10、D【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件故选:D【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法二、填空题1、5或6【分析】先把多边形的边数与对角线的条数之和因式分解,列不等式得出,两个连续整式的积小于40根据能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除即可

14、【详解】解:20,能被5整除,当n=5,能被5整除,当n-1=5,n=6,能被5整除,故答案为5或6【点睛】本题考查因式分解,熟记n边形对角线条数的公式,列不等式,根据条件进行讨论是解题关键2、(-1,-2)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y)据此作答【详解】解:根据中心对称的性质,得点P(1,2)关于原点中心对称的点的坐标为(-1,-2)故答案为:(-1,-2)【点睛】本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键3、6【分析】根据内角和等于外角和的2倍则内角和是720利用多边形内角和公式得到关于边数的方程,解方程就

15、可以求出多边形的边数【详解】解:根据题意,得(n2)1803602,解得:n6故这个多边形的边数为6故答案为:6【点睛】本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决4、【分析】根据题意连接BE,连接AE交FG于O,如图,利用菱形的性质得BDC为等边三角形,ADC=120,再在在RtBCE中计算出BE=CE=,然后证明BEAB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在RtBEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在RtAOF中利用勾股定理计算出OF,再利用余弦的定义求解即可【详

16、解】解:连接BE,连接AE交FG于O,如图,四边形ABCD为菱形,A=60,BDC为等边三角形,ADC=120,E点为CD的中点,CE=DE=1,BECD,在RtBCE中,BE=CE=,ABCD,BEAB,设AF=x,菱形纸片翻折,使点A落在CD的中点E处,FE=FA=x,BF=2-x,在RtBEF中,(2-x)2+()2=x2,解得:,在RtAOF中,故答案为: 【点睛】本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等5、【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行

17、求解即可【详解】解:点A(m,5)与点B(4,n)关于原点成中心对称,m=4,n=-5,m+n=-5+4=-1,故答案为:-1【点睛】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键三、解答题1、(1)见解析;(2)见解析【分析】(1)先证明四边形是平行四边形,结合,从而可得结论;(2)先证明,再求解 证明证明从而可得结论.【详解】(1)证明:四边形是平行四边形,即 ,四边形是平行四边形,四边形是矩形;(2)四边形是平行四边形, 四边形是矩形; 在中,由勾股定理,得,即平分【点睛】本题考查的是勾股定理的应用,角平分线的定义,平行四边形的判定与性质,

18、矩形的判定,证明四边形是平行四边形是解(1)的关键,证明是解(2)的关键.2、(1)PDPC,PDPC;(2)成立,见解析;(3)2或4【分析】(1)根据直角三角形斜边中线的性质,可得,根据角之间的关系即可,即可求解;(2)过点P作PTAB交BC的延长线于T,交AC于点O,根据全等三角形的判定与性质求解即可;(3)分两种情况,当点E在BC的上方时和当点E在BC的下方时,过点P作PQBC于Q,利用等腰直角三角形的性质求得,即可求解【详解】解:(1)ACB90,ACBC,点P为AE的中点,故答案为:,(2)结论成立理由如下:过点P作PTAB交BC的延长线于T,交AC于点O则,由勾股定理可得:点P为

19、AE的中点,在中,(3)如图31中,当点E在BC的上方时,过点P作PQBC于Q则,由(2)可得,为等腰直角三角形由勾股定理得,如图32中,当点E在BC的下方时,同法可得PCPD2综上所述,PC的长为4或2【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练掌握相关基本性质,做辅助线,构造出全等三角形3、见解析【分析】由已知条件可得DF=AB及DFAB,从而可得四边形ABFD为平行四边形,则问题解决【详解】是的中位线DEAB,AD=DCDFABEF=DEDF=AB四边形ABFD为平行四边形AD=BFBF=DC【点睛】本题主要考查了平行四边形的判定与性质、三角

20、形中位线的性质定理,掌握它们是解答本题的关键当然本题也可以用三角形全等的知识来解决4、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解【详解】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD,点 E、 F、G、H分别是OA、OB、OC、OD的中点,OE=OG,OF=OH,四边形EFGH是平行四边形;(2)点 E、 F、G、H分别是OA、OB、OC、OD的中点, ,的周长为2(AB+BC)=32, , ,由(1

21、)知:四边形EFGH是平行四边形,四边形EFGH的周长为 【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键5、(1)见解析;(2)2【分析】(1)利用ASA定理证明AEBAED,得到BE=ED,AD=AB,根据三角形中位线定理解答;(2)分别延长BE、AC交于点H,仿照(1)的过程解答【详解】解:(1)证明:AE平分,BAE=DAE,AEB=AED=90,在AEB和AED中,AEBAED(ASA)BE=ED,AD=AB,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CD=(AC-AD)=(AC-AB);(2)解:分别延长BE、AC交于点H,AE平分,BAE=DAE,AEB=AED=90,在AEB和AEH中,AEBAEH(ASA)BE=EH,AH=AB=9,点F是BC的中点,BF=FC,EF是BCD的中位线,EF=CH=(AH-AC)=2【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁