2021-2022学年最新北师大版八年级数学下册第一章三角形的证明专项攻克试题.docx

上传人:可****阿 文档编号:32542072 上传时间:2022-08-09 格式:DOCX 页数:25 大小:323.08KB
返回 下载 相关 举报
2021-2022学年最新北师大版八年级数学下册第一章三角形的证明专项攻克试题.docx_第1页
第1页 / 共25页
2021-2022学年最新北师大版八年级数学下册第一章三角形的证明专项攻克试题.docx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《2021-2022学年最新北师大版八年级数学下册第一章三角形的证明专项攻克试题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新北师大版八年级数学下册第一章三角形的证明专项攻克试题.docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第一章三角形的证明专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,分别以点A和点C为圆心,大于AC的长为半径画弧交于两点,过这两点作直线交AC于点E,交BC

2、于点D,连接AD若ADB的周长为15,AE4,则ABC的周长为()A17B19C21D232、如图,等边ABC中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C10D123、如图,在ABC中,AB=AC,D是BC的中点,B=35,则BAD=( )A110B70C55D354、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( ) A12B14C16D185、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( )A锐角三角形B直角三角形C钝角三角形D等腰三角形6、如图,ABC中,ABC与ACB的平分线交于

3、点F,过点F作DEBC交AB于点D,交AC于点E,那么下列结论:BDF是等腰三角形;DEBD+CE;若A50,则BFC115;DFEF其中正确的有( )A1个B2个C3个D4个7、如图,ABC是等边三角形,点在边上,则的度数为( )A25B60C90D1008、如图,在ABC中,BAC=90,ABC=2C,平分ABC,交AC于点E,于点D,有下列结论:;点E在线段BC的垂直平分线上;其中,正确的结论有( )A1个B2个C3个D4个9、如图,等腰ABC中,ABAC,点D是BC边中点,则下列结论不正确的是( )ABCBADBCCBADCADDAB2BC10、有两边相等的三角形的两边长为,则它的周长

4、为( )ABCD或第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AD是ABC中BAC的角平分线,DEAB于点E,DFAC于点F,SABC21,DE3,AB9,则AC长是_2、如图,在ABC中,AD平分交于点D,点D到AB的距离为,则BD的长为_3、如图,ABC中,A68,点D是BC上一点,BD、CD的垂直平分线分别交AB、AC于点E、F,则EDF_度4、如图,ABC中,ABACDC,D在BC上,且ADDB,则BAC_5、如图,在33正方形网格中,A、B在格点上,在网格的其它格点上任取一点C,能使ABC为等腰三角形的概率是_三、解答题(5小题,每小题10分,共计5

5、0分)1、如图,在RtABC中,C90,BAC60,AM平分BAC,AM的长为15cm,求BC的长2、下面是小军设计的“过线段端点作这条线段的垂线”的尺规作图过程已知:线段AB求作:AB的垂线,使它经过点A作法:如图,以点A为圆心,AB长为半径作弧,交线段BA的延长线于点C; 分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于直线BC上方的点D;作直线AD所以直线AD就是所求作的垂线根据小军设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接CD,BDBD= ,AB= ,ADAB( )(填推理的依据)3、如图,ABAD,ACAE,BCDE,

6、点E在BC上(1)求证:EACBAD;(2)若EAC42,求DEB的度数4、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,BAECAD,ABAE,ADAC(1)求证:DECBAE;(2)如图2,当BAECAD30,ADAB时,延长DE、AB交于点G,请直接写出图中除ABE、ADC以外的等腰三角形5、如图,已知锐角ABC(1)尺规作图:作ABC的高AD(保留作图的痕迹,不要求写出作法);(2)若,AB+BD与DC有什么关系?并说明理由-参考答案-一、单选题1、D【分析】由题意知,DE是线段AC的垂直平分线,据此得AD=CD,AE=EC,再由AB+BD+AD=15知AB+BD+

7、CD=15,即AB+BC=15,结合AE=4可得答案【详解】解:由题意知,DE是线段AC的垂直平分线,AD=CD,AE=EC,AB+BD+AD=15,AB+BD+CD=15,即AB+BC=15,AE=4,即AC=2AE=8,ABC的周长为AB+BC+AC=15+8=23,故选:D【点睛】本题主要考查作图基本作图,线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键2、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最

8、小值为故选:C【点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型3、C【分析】根据等腰三角形三线合一的性质可得ADBC,然后利用直角三角形两锐角互余的性质解答【详解】解:ABAC,D是BC的中点,ADBC,B35,BAD903555故选:C【点睛】本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键4、B【分析】如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长

9、方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽【详解】解:如图,延长NO交AD的延长线于点P, 设BC=x,则AB=3x, 折叠, AB=BM=CO=CD=PO=3x, 纸条的宽为:MO=NO=3x+3x+x=7x, 纸条的长为:2PN=2(7x+3x)=20x=40 解得:x=2, 纸条的宽NO=72=14 故答案为:B【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解5、B【分析】根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案【详解】如图,在ABC中,CD是边AB上的中线

10、AD=CD=BDA=DCA,B=DCBA+ACB+B=180 A+DCA+DCB+B=180即2A+2B=180A+B=90ACB=90ABC是直角三角形故选:B【点睛】本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键6、C【分析】根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答【详解】解:BF是AB的角平分线,DBFCBF,DEBC,DFBCBF,DBFDFB,BDDF,BDF是等腰三角形;故正确;同理,EFCE,DEDF+EFBD+CE,故正确;A50,ABC+ACB130,BF平分ABC,CF平分ACB,FBC+FCB(ABC+ACB)65

11、,BFC18065115,故正确;当ABC为等腰三角形时,DFEF,但ABC不一定是等腰三角形,DF不一定等于EF,故错误故选:C【点睛】本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键7、D【分析】由等边三角形的性质及三角形外角定理即可求得结果【详解】是等边三角形C=60ADB=DBC+C=40+60=100故选:D【点睛】本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键8、D【分析】首先求出C=30,ABC=60,再根据角平分线的定义,直角三角形30角的性质,线段的垂直平分线的定义

12、一一判断即可【详解】解:在ABC中,BAC=90,ABC=2C,C=30,ABC=60,BE平分ABC,ABE=EBC=30,EBC=C,EB=EC,ACBE=ACEC=AE,故正确,EB=EC,点E在线段BC的垂直平分线上,故正确,ADBE,BAD=60,BAE=90,EAD=30,EAD=C,故正确,ABD=30,ADB=90,AB=2AD,BAC=90,C=30,BC=2AB=4AD,故正确,故选:D【点睛】本题考查角平分线的性质,线段的垂直平分线的定义,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型9、D【分析】根据等腰三角形的等边对等角的性质及三线合一

13、的性质判断【详解】解:ABAC,点D是BC边中点,BC,ADBC,BADCAD,故选:D【点睛】此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键10、D【分析】有两边相等的三角形,是等腰三角形,两边分别为和,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为综上所述,该等腰三角形的周长是或故选:D【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰

14、时,应在符合三角形三边关系的前提下分类讨论二、填空题1、5【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形的面积公式列式计算即可得解【详解】解:AD是ABC中BAC的角平分线,DEAB,DFAC,DE=DF,SABC=93+AC3 =21,解得AC=5故答案为:5【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键2、6【分析】过点D作DEAB根据角平分线的性质定理解得DE=DC,结合图形解题即可【详解】解:过点D作DEABAD平分,DEAB故答案为:6【点睛】本题考查角平分线的性质,掌握相关知识是解题关键3、68【分析】根据线段垂直平分线的性

15、质得到EBED,FDFC,则EDBB,FDCC,从而可以得到EDB+FDCB+C,再由EDF180(EDB+FDC),A180(B+C),即可得到EDFA68【详解】解:BD、CD的垂直平分线分别交AB、AC于点E、F,EBED,FDFC,EDBB,FDCC,EDB+FDCB+C,EDF180(EDB+FDC),A180(B+C),EDFA68故答案为:68【点睛】本题主要考查了线段垂直平分线的性质,三角形内角和定理,等腰三角形的性质与判定,熟知线段垂直平分线的性质是解题的关键4、108108度【分析】先设Bx,由ABAC可知,Cx,由ADDB可知BDABx,由三角形外角的性质可知ADCB+D

16、AB2x,根据DCCA可知ADCCAD2x,再在ABC中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,从而求解【详解】设Bx,ABAC,CBx,ADDB,BDABx,ADCB+DAB2x,DCCA,ADCCAD2x,在ABC中,x+x+2x+x180,解得:x36BAC108故答案为:108【点睛】此题主要考查等腰三角形的判定和性质、三角形的内角和定理,解题的关键是熟练进行逻辑推理5、【分析】分三种情况:点A为顶点;点B为顶点;点C为顶点;得到能使ABC为等腰三角形的点C的个数,再根据概率公式计算即可求解【详解】如图,AB,若ABAC,符合要求的有3个点;若ABBC,符合要求的

17、有2个点;若ACBC,不存在这样格点这样的C点有5个能使ABC为等腰三角形的概率是故答案为:【点睛】此题考查等腰三角形的判定和概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)三、解答题1、【分析】根据角平分线定义和直角三角形的两锐角互余求得MAC30,ABC30,再根据直角三角形中30所对的直角边是斜边的一半和勾股定理分别求得MC、AC、AB、BC即可【详解】解:AM是BAC的平分线,BAC60,C90,MAC30,ABC30,MCAM7.5cm,AC(cm),AB2AC15(cm),BC(cm)【点睛】本题考查角平分线的定义、含3

18、0角的直角三角形的性质、勾股定理,熟知含30角的直角三角形的性质是解答的关键2、(1)见解析(2)CD,AC,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合【分析】(1)根据作法补全图形即可;(2)根据圆的半径相等,等腰三角形的性质即可得到结论(1)解:补全的图形如图所示:(2)证明:连接CD,BDBD=CD,AB=AC ,ADAB(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)(填推理的依据)故答案为:CD,AC,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合【点睛】本题考查作图-复杂作图,线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是掌握等腰三

19、角形的性质,灵活运用所学知识解决问题3、(1)见解析;(2)42【分析】(1)利用边边边证得ABCADE,可得BACDAE,即可求证;(2)根据等腰三角形的性质,可得AECC69,再由ABCADE,可得AEDC69, 即可求解【详解】(1)证明:ABAD,ACAE,BCDE,ABCADE BACDAE BACBAEDAEBAE即EACBAD; (2)解:ACAE,EAC=42,AECC (180EAC) (18042)69ABCADE,AEDC69, DEB180AEDC180696942【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三

20、角形的性质定理是解题的关键4、(1)见解析;(2)AEF、ADG、DCF、ECD【分析】(1)根据已知条件得到BAECAD,根据全等三角形的性质得到AEDABC,根据等腰三角形的性质得到ABCAEB,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论【详解】证明:(1)如图1,BAECAD, BAECAECADCAE,即BACEAD,在AED与ABC中,AEDABC,AEDABC,BAEABCAEB180,CEDAEDAEB180,ABAE,ABCAEB,BAE2AEB180,CED2AEB180,DECBAE;(2)解:如图2, BAECAD30,ABCAEBACDADC75,由(1)

21、得:AEDABC75,DECBAE30,ADAB,BAD90,CAE30,AFE180307575,AEFAFE, AEF是等腰三角形, BEGDEC30,ABC75,G45,在RtAGD中,ADG45,ADG是等腰直角三角形, CDF754530,DCFDFC75,DCF是等腰直角三角形;CEDEDC30,ECD是等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键5、(1)见详解;(2),理由见详解【分析】(1)以点A圆心,适当长为半径画弧,交BC于两点,再以这两点为圆心,大于这两点的距离的一半为半径画弧,交于一点,然后连接即可;(2)在DC上截取DE=BD,连接AE,由题意易得AB=AE,则有B=AEB,进而可得AE=EC,最后问题可求解【详解】解:(1)如图所示,即为所求;(2),理由如下:在DC上截取DE=BD,连接AE,如图所示:,AB=AE,B=AEB,AE=EC=AB,【点睛】本题主要考查等腰三角形的性质与判定及线段垂直平分线的性质定理,熟练掌握等腰三角形的性质与判定及线段垂直平分线的性质定理是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁