《2021-2022学年浙教版初中数学七年级下册第五章分式定向测试试题(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第五章分式定向测试试题(精选).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式定向测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列运算错误的是( )ABCD2、若关于的方程的解是正数,则的取值范围为( )ABC且D且3、抗击“新冠肺炎”疫情中,某呼吸机厂家接到一份生产300台呼吸机的订单,在生产完成一半时,应客户要求,需提前供货,每天比原来多生产20台呼吸机,结果提前2天完成任务设原来每天生产x台呼吸机,下列列出的方程中正确的是()A+2B+2C2D24、下列有四个结论,其中正确的是( )若,则只能是;若的运算结果中不含项,则 若,
2、则 若,则可表示为ABCD5、一项工作,甲、乙两人合作,4天可以完成他们合作了3天后,乙另有任务,甲单独又用了天才全部完成问甲、乙两人单独做,各需几天完成?设甲单独做需要x天,根据题意可列出方程()ABCD6、己知关于x的分式的解为非负数,则a的范围为( )A且B且C且D且7、计算的结果为( )A1BCD8、分式,中,最简分式有( )A1个B2个C3个D4个9、新冠疫苗载体腺病毒的直径约为0.000085毫米,将数0.000085用科学记数法表示为( )A8510-6B8.510-5C8.510-6D0.8510-410、当时,代数式的值是( )A3B4C5D6二、填空题(5小题,每小题4分,
3、共计20分)1、当_时,关于的方程会产生增根2、已知,用,表示的式子为_3、某种苔藓植物的孢子的直径约为18微米,将“18微米”用科学记数法表示为“米”,其中的值为_(1米=1000000微米)4、用科学记数法表示:_5、已知分式的值是整数,则满足条件的所有整数的和为_三、解答题(5小题,每小题10分,共计50分)1、两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是akm/h(1)2h后两船相距多远?(2)2h后甲船比乙船多航行多少千米?(3)一艘小快艇送游客在甲、乙两个码头间往返,其中去程的时间是回程的时间3倍,则小快艇在静水中的速度v与水流
4、速度a的关系是 2、已知,(1)当时,求的值;(2)求的值3、计算:4、计算:5、(学习材料)拆项添项法在对某些多项式进行因式分解时,需要把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相反的项,这样的分解因式的方法称为拆项添项法,如:例1 分解因式:(解析)解:原式=例2 分解因式:(解析)解:原式=(知识应用)请根据以上材料中的方法,解决下列问题:(1)分解因式:_(2)运用拆项添项法分解因式:(3)化简:-参考答案-一、单选题1、A【分析】利用负整数指数幂的性质和零次幂的性质、乘方的意义进行计算【详解】解:A、(0.1)110,故原题计算错误;B、,故原题计算正确;C、,故
5、原题计算正确;D、121,故原题计算正确;故选:A【点睛】此题主要考查了负整数指数幂,关键是掌握负整数指数幂:ap(a0,p为正整数),零指数幂:a01(a0)2、C【分析】先解分式方程求解,根据方程的解为正数,求出a的范围,然后将方程的增根代入求出,所以a的取值范围是且【详解】解:解方程,得,是方程的增根,当时,解得,即当时,分式方程有增根,a的取值范围是且故选:C【点睛】本题考查了分式方程的解,熟练解分式方程是解题的关键3、D【分析】根据完成前一半所用时间+后一半所用时间原计划所用时间2可列出方程【详解】解:设原来每天生产x台呼吸机,根据题意可列方程:2,整理,得:2,故选:D【点睛】本题
6、主要考查由实际问题抽象出分式方程,解题的关键是理解题意找到题目蕴含的相等关系,并根据相等关系列出方程4、D【分析】根据零次幂、多项式乘多项式、完全平方公式及同底数幂的除法法则分别对每一项进行分析,即可得出答案【详解】解:若,则或,错误;,不含项则,解得,正确;,所以,错误;,正确综上所述,正确故选D【点睛】本题考查了零次幂、多项式乘多项式、完全平方公式以及同底数幂的除法,熟练掌握运算法则是解题的关键5、B【分析】设甲单独完成需要x天,根据题意列出方程即可求出答案【详解】解:设甲单独完成需要x天,由题意可知:两人合作的效率为,甲的效率为31,即故选B【点睛】本题考查分式方程,解题的关键是正确找出
7、题中的等量关系,本题属于基础题型6、A【分析】先求出分式方程的解,然后根据分式方程的解是非负数以及分式有意义的条件求解即可.【详解】解:,分式方程的解为非负数且分式方程要有意义,解得且,故选A.【点睛】本题主要考查了解分式方程以及分式方程有意义的条件,解题的关键在于能够熟练掌握相关知识进行求解.7、B【分析】先把分母2a变形为(a2),即通分,再按分式的加减运算法则计算即可【详解】解:原式=;故选:B【点睛】此题考查的是分式的加减运算,化为同分母进行计算是解决此题关键8、B【分析】根据最简分式的定义,即可求得,最简分式:一个分式的分子与分母没有公因式时,叫最简分式【详解】,不是最简分式,是最简
8、分式,最简分式有2个故选B【点睛】本题考查了最简分式,掌握最简分式的定义是解题的关键9、B【分析】由题意依据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定进行分析即可【详解】解: 0.000085=8.510-5, 故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定10、B【分析】根据,得b=3a,代入计算即可【详解】解:,b=3a,=,故选:B【点睛】此题考查求分式的值,
9、根据已知得到b=3a代入计算是求解的关键二、填空题1、6或【分析】先将分式方程化为整式方程,再求得分式方程的增根,然后求解即可【详解】解:方程两边都乘,得,最简公分母为,原方程增根为或2,把代入整式方程,得,解得;把代入整式方程,得,解得故答案为:6或【点睛】本题考查了分式方程的增根,先把分式方程转化为整式方程,若整式方程的解使分式方程的分母为0,则这个整式方程的解就是分式方程的增根,掌握分式方程的增根是解题的关键2、【分析】根据分式的性质,将等式中的分式化为整式,再用,表示即可【详解】,即,故答案为:【点睛】本题考查了分式的性质,等式的性质,掌握分式的性质是解题的关键3、-5【分析】绝对值小
10、于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:18微米=0.000018米=1.810-5米,n=-5,故答案为:-5【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于等于10时,n是正数;当原数的绝对值小于
11、1时,n是负数【详解】解:,故答案为:【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,正确确定a的值以及n的值是解决问题的关键5、5【分析】先由分式有意义的条件可得,再化简原分式可得结果为,由原分式的值为整数可得:,再解方程并检验可得答案.【详解】解:,分式的值是整数,是整数,符合题意的,0,3,故答案为:5【点睛】本题考查的是分式的值为整数,理解分式的值为整数时对分式的分子与分母的要求是解题的关键.三、解答题1、(1)2h后两船相距千米(2)2h后甲船比乙船多航行千米;(3)【分析】(1)分别求得甲乙两船行驶的路程,即可求解;(2)用甲
12、船行驶的路程减去乙船行驶的路程,即可求解;(3)由题意可得去程是逆水行驶,返程是顺水行驶,设码头之前的距离为,列方程求解即可【详解】解:(1)2h后,甲船行驶的路程为,乙船行驶的路程为两船相距为答:2h后两船相距千米(2)由(1)得2h后,甲船行驶的路程为,乙船行驶的路程为甲船比乙船多航行答:2h后甲船比乙船多航行千米(3)由题意可得去程是逆水行驶,返程是顺水行驶,设码头之前的距离为则去程时间为,返程时间为由题意可得,即,解得快艇在静水中的速度v与水流速度a的关系是为故答案为【点睛】此题考查了列代数式,以及分式的应用,解题的关键是掌握船顺流航行和逆流航行的速度公式是解题的关键2、(1);(2)
13、37【分析】(1)根据同底数幂的乘法及幂的乘方可直接进行求解;(2)根据完全平方公式及平方差公式可直接进行求解【详解】解:(1),原式=;(2),=37【点睛】本题主要考查同底数幂的运算、负指数幂及乘法公式,熟练掌握同底数幂的运算、负指数幂及乘法公式是解题的关键3、4【分析】直接利用零指数幂的性质以及立方根的性质、负整数指数幂的性质、绝对值的性质分别化简得出答案【详解】解:=3+1+42-4=3+1+2-2=4【点睛】本题主要考查了零指数幂的性质以及立方根的性质、负整数指数幂的性质、绝对值的性质,正确化简各数是解题关键4、【分析】根据分式的乘除法进行计算,注意进行约分【详解】解:原式【点睛】本题考查了分式的乘除法,解决本题的关键是遇到除法,变为乘法计算,并注意约分.5、(1);(2);(3)【分析】(1)根据题意利用拆项添项法,并结合完全平方公式和平方差公式进行因式分解;(2)根据题意利用拆项添项法,并结合完全平方公式和平方差公式进行因式分解;(3)根据题意利用拆项添项法对分式的分子进行因式分解,然后再约分化简【详解】解:(1),;(2),;(3),原式【点睛】本题考查因式分解,理解题意,并熟练掌握完全平方公式和平方差公式的公式结构是关键