《2021-2022学年浙教版初中数学七年级下册第五章分式定向测试试卷.docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第五章分式定向测试试卷.docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式定向测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列分式的变形正确的是()ABx+yCD2、已知(),则分式的值为( )A2B2C3D33、代数式的家中来了几位客人:、,其中属于分式家族成员的有( )A1个B2个C3个D4个4、化简的结果正确的是( )ABCD5、新冠病毒的大小为125纳米也就是0.000000125米,这个数据用科学记数法可表示为( )A0.125107B1.25107C1.25107D0.1251076、若,则可用含和的式子表示为( )
2、ABCD7、在研制新冠肺炎疫苗过程中,某细菌的直径大小为米,用科学记数法表示这一数字,正确的是( )ABCD8、已知关于x,y的方程组,则下列结论中正确的是:当a0时方程组的解是方程x+y1的解;当xy时,a;当xy1,则a的值为3或3;不论a取什么实数3xy的值始终不变()ABCD9、用科学记数法表示数0.0000104为( )ABCD10、关于的分式方程有解,则字母的取值范围是( )A或BCD且二、填空题(5小题,每小题4分,共计20分)1、若0a1,2b1,则=_2、清代诗人袁枚的一首诗苔中写到:“白日不到处,青春恰自来苔花如米小,也学牡丹开”, 若苔花的花粉直径约为0.0000084米
3、,用科学记数法表示为 _3、若(m3)01,则m的取值为_4、若,则的值是_5、计算:=_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中a32、解分式方程:3、(1)计算:32(2021)0+|2|()2();(2)解方程:14、计算:(1)(2)5、已知,(1)当时,求的值;(2)求的值-参考答案-一、单选题1、D【分析】根据分式的基本性质,分别进行判断,即可得到答案【详解】解:A、,故此选项不符合题意;B、是最简分式,不能再约分,故此选项不符合题;C、是最简分式,不能再约分,故此选项不符合题意;D、,正确,故此选项符合题意;故选:D【点睛】本题考查了分式的基本性质
4、解题的关键是掌握分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为02、C【分析】由题意可知x=3y,然后根据因式分解法进行化简,再将x=3y代入原式即可求出答案【详解】解:x-3y=0,x=3y,原式= 故选:C【点睛】本题考查分式的运算,解题的关键是熟练运用因式分解法将分式化简,再把x换成3y3、C【分析】根据分式的定义:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子就叫做分式,其中A称为分子,B称为分母,据此判断即可【详解】解:属于分式的有:、,故选:C【点睛】本题考查了分式的定义,熟
5、知定义是解本题的关键4、D【分析】直接运用分式的混合运算法则计算即可【详解】解:,故选:D【点睛】本题考查了分式的混合运算,熟练掌握分式的混合运算法则是解本题的关键5、C【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:0.000000125=1.25107,故选:C【点睛】此题考查科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,等于原数左数第一个非零数字前0的个数,按此方法即可正确求解6、D【分析】先将转化为关于b的整式方程,然后用a、s表示出b即可【详解】解
6、:,s1,故选:D【点睛】本题考查解分式方程,解答的关键是熟练掌握分式方程的一般步骤7、C【分析】用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键8、B【分析】把a看做已知数表示出方程组的解,把a0代入求出x与y的值,代入方程检验即可;令xy求出a的值,即可作出判断;把x与y代入3xy中计算得到结果,判断即可;令2x3y求出a的值,判断即可【详解】解:,据题意得:3x3a6,解
7、得:xa2,把xa2代入方程x+y1+4a得:y3a+3,当a0时,x2,y3,把x2,y3代入x+y1得:左边2+31,右边1,是方程的解,故正确;当xy时,a23a+3,即a,故正确;当xy1时,(a2)3a+31,即a1,或 或 故错误3xy3a63a39,无论a为什么实数,3xy的值始终不变为9,故正确正确的结论是:,故选:B【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键9、B【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个
8、不为零的数字前面的0的个数所决定【详解】解:0.0000104=1.0410-5,故选:B【点睛】本题考查科学记数法,解答本题的关键是明确科学记数法的方法10、D【分析】先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程有解”,即x0且x2建立不等式即可求a的取值范围【详解】解:,去分母得:5(x-2)=ax,去括号得:5x-10=ax,移项,合并同类项得:(5-a)x=10,关于x的分式方程有解,5-a0,x0且x2,即a5,系数化为1得:,且,即a5,a0,综上所述:关于x的分式方程有解,则字母a的取值范围是a5,a0,故选:D【点睛】此题考查了求分式方程的解,由于我们的目的是
9、求a的取值范围,根据方程的解列出关于a的不等式另外,解答本题时,容易漏掉5-a0,这应引起同学们的足够重视二、填空题1、2【分析】先根据题意得出a10,b+20,再根据绝对值的性质化简即可解答【详解】解:0a1,2b1,a10,b+20,=11=2,故答案为:-2【点睛】本题考查有理数的减法运算、绝对值的性质,会利用绝对值的性质化简是解答的关键2、【分析】用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为整数【详解】0.0000084故答案为:【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数
10、所决定,确定a与n的值是解题的关键3、m3【分析】利用零指数幂的法则判断即可确定出的值【详解】解:,则故答案为:【点睛】此题考查了零指数幂,熟练掌握零指数幂的法则是解本题的关键4、或或【分析】对进行分类讨论,、三种情况,分别求解即可【详解】解:当时,当时,当时,综上所述,的值为,故答案为或或【点睛】此题考查了绝对值的性质以及有理数的有关运算,解题的关键是对的范围进行分类讨论,分别求解5、1【分析】直接利用立方根以及有理数的乘方运算法则、零指数幂的性质分别化简得出答案【详解】解:=2+(1)1=21=1故答案为:1【点睛】本题主要考查了立方根以及有理数的乘方运算、零指数幂的性质,正确化简各数是解
11、题关键三、解答题1、,【分析】利用因式分解,分式的乘法,除法运算法则,约分等先化简,后代入求值即可【详解】原式;当a3时,原式【点睛】本题考查了分式的乘除运算,熟练掌握因式分解,约分,运算法则是解题的关键2、【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解【详解】解:两边同时乘以,得:,解得:,检验当时,是分式方程的解【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验3、(1)-7;(2)x9【分析】(1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)直接去分母,移项合并同类项解方程即可【详解】解:(
12、1)原式91+29()91+2+17;(2)去分母得:2x3(1+x)12,去括号得:2x33x12,移项得:2x3x12+3,合并同类项得:x9,系数化1得:x9【点睛】此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键4、(1)0;(2)1【分析】(1)分别利用有理数的乘方及负整数指数幂的乘方法则进行计算即可;(2)分别利用积的乘方的运算法则及平方差公式进行计算,再合并同类项即可【详解】解:(1);(2)【点睛】本题考查了有理数的混合运算及整式的混合运算,熟练掌握相关运算法则并能灵活运用其求解是解题的关键5、(1);(2)37【分析】(1)根据同底数幂的乘法及幂的乘方可直接进行求解;(2)根据完全平方公式及平方差公式可直接进行求解【详解】解:(1),原式=;(2),=37【点睛】本题主要考查同底数幂的运算、负指数幂及乘法公式,熟练掌握同底数幂的运算、负指数幂及乘法公式是解题的关键