2021-2022学年度强化训练北师大版八年级数学下册第五章分式与分式方程综合测评试卷(精选).docx

上传人:可****阿 文档编号:32541002 上传时间:2022-08-09 格式:DOCX 页数:15 大小:184.85KB
返回 下载 相关 举报
2021-2022学年度强化训练北师大版八年级数学下册第五章分式与分式方程综合测评试卷(精选).docx_第1页
第1页 / 共15页
2021-2022学年度强化训练北师大版八年级数学下册第五章分式与分式方程综合测评试卷(精选).docx_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2021-2022学年度强化训练北师大版八年级数学下册第五章分式与分式方程综合测评试卷(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版八年级数学下册第五章分式与分式方程综合测评试卷(精选).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第五章分式与分式方程综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列分式中是最简分式的是()ABCD2、 “绿水青山就是金山银山”某工程队承接了60万平方米的荒山绿化任务

2、,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务设原计划工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是( )ABCD3、若关于x的方程有增根,则m的取值是( )A0B2C-2D14、若代数式运算结果为x,则在“”处的运算符号应该是( )A除号“”B除号“”或减号“-”C减号“-”D乘号“”或减号“-”5、若把x、y的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )ABCD6、如果把分式中的和都扩大2倍,那么分式的值( )A扩大2倍B不变C缩小2倍D缩小4倍7、某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱

3、进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书若设每个A型包装箱可以装书x本,则根据题意列得方程为()ABCD8、若,则下列分式化简正确的是( )ABCD9、已知:,则的值是()ABC5D510、关于x的方程有增根,则m的值是( )A2B1C0D-1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当时,分式的值为_2、分式方程的解是 _3、 “有一种速度叫中国速度,有一种骄傲叫中国高铁”快速发展的中国高速铁路,正改变着中国人的出行方式下表是从北京到上海的两次列车的相关信息:出行方式出发站到达站路程平均速度

4、特快列车T109北京上海全程1463km98 km/h高铁列车G27北京南上海虹桥全程1325kmx km/h已知从北京到上海乘坐G27次高铁列车比T109次特快列车用时少10小时26分钟设G27次高铁列车的平均速度为x km/h,根据题意可列方程为_4、计算:_5、化简分式的结果是_三、解答题(5小题,每小题10分,共计50分)1、某施工队对一段2400米的河堤进行加固,在施工800米后,采用新的施工机器,每天工作的效率比原来提高了25%,共用了26天完成全部工程(1)求原来每天加固河堤多少米?(2)若承包方原来每天支付施工队工资800元,提高工作效率后,每天支付给施工队的工资也增加了25%

5、,那么整个工程完成后承包方需要支付工资多少元?2、为了营造“创建文明城区、共享绿色家园”的良好氛围,房山某社区计划购买甲、乙两种树苗进行社区绿化,已知用1200元购买甲种树苗与用1000元购买乙种树苗的棵树相同,乙种树苗比甲种树苗每棵少20元,问甲种树苗每棵多少元?3、先化简,再求值:,其中4、某学校在疫情期间用3000元购进A、B两种洗手液共550瓶,购买A种洗手液与购买B种洗手液的费用相同,且A种洗手液的单价是B种洗手液单价的1.2倍(1)求B种洗手液的单价是多少元?(2)学校计划用不超过9800元的资金再次购进A、B两种洗手液共1800瓶,求A种洗手液最多能购进多少瓶?5、化简:-参考答

6、案-一、单选题1、D【分析】根据最简分式的定义:分母与分子没有公因式的分式叫做最简分式进行逐一判断即可【详解】解:A、,不是最简分式,不符合题意;B、,不是最简分式,不符合题意;C、,不是最简分式,不符合题意;D、,是最简分式,符合题意;故选D【点睛】本题主要考查了最简分式的定义,熟知定义是解题的关键2、A【分析】设原计划工作时每天绿化的面积为x万平方米,则实际每天绿化的面积为万平方米,根据题意,得,选择即可【详解】设原计划工作时每天绿化的面积为x万平方米,则实际每天绿化的面积为万平方米,根据题意,得,故选A【点睛】本题考查了分式方程的应用题,准确找到等量关系是解题的关键3、A【分析】方程两边

7、都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值【详解】方程两边都乘以(x-2)得:-2+x+m=2(x-2),分式方程有增根,x-2=0,解得x=2,-2+2+m=2(2-2),解得m=0故答案为:A【点睛】此题考查分式方程的增根,掌握运算法则是解题关键4、B【分析】分别计算出+、-、时的结果,从而得出答案【详解】解:,故选B【点睛】本题主要考查分式的运算,解题的关键是熟练掌握分式的运算法则5、B【分析】根据分式的基本性质逐项判断即可得【详解】解:A、,此项不符题意;B、,此项符合题意;C、,

8、此项不符题意;D、,此项不符题意;故选:B【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题关键6、C【分析】根据分式的性质求解即可【详解】解:把分式中的和都扩大2倍,得:,分式的值缩小2倍故选:C【点睛】此题考查了分式的基本性质,解题的关键是熟练掌握分式的基本性质分式的基本性质:分式的分子和分母乘(或除以)同一个不等于0的整式,分式值不变7、C【分析】设每个A型包装箱可以装书本,则每个B型包装箱可以装书()本,所用A型包装箱的数量=所用B型包装箱的数量6,列分式方程即可【详解】解:设每个A型包装箱可以装书本,则每个B型包装箱可以装书()本,根据题意,得:,故选:C【点睛】本题考查

9、了列分式方程解应用题,由实际问题抽象出分式方程的关键是分析题意找出等量关系8、C【分析】找出分子分母的公因式进行约分,化为最简形式【详解】解:A选项中,已是最简分式且不等于,所以错误,故不符合题意;B选项中,已是最简分式且不等于,所以错误,故不符合题意;C选项中,所以正确,故符合题意;D选项中,所以错误,故不符合题意;故选C【点睛】本题考查了分式的化简解题的关键是找出分式中分子、分母的公因式进行约分9、D【分析】首先分式方程去分母化为整式方程,求出(ba)的值,把(ba)看作一个整体代入分式约分即可【详解】解:,baab,5;故选:D【点睛】本题考查了分式的加减法、分式的值,熟练掌握这一类型的

10、解题方法,首先分式方程去分母化为整式方程,把(b-a)看作一个整体代入所求分式约分是解题关键10、A【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根有增根,最简公分母x1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值【详解】解:两边都乘(x1),得:m1x0,方程有增根,最简公分母x1=0,即增根是x=1,把x=1代入整式方程,得m=2故选A【点睛】考查了分式方程的增根,解决增根问题的步骤:确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值二、填空题1、2025【分析】把分式化简为,然后把b的值代入计算即可【详解】解:,当时,

11、原式2021+42025故答案为:2025【点睛】本题考查了分式的化简求值,熟练掌握利用平方差公式对分式进行化简是解题的关键2、x=-6【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:去分母得:2x=3x+6,解得:x=-6,检验:把x=-6代入得:x(x+2)0,x=-6是分式方程的解故答案为:x=-6【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验3、【分析】由题意直接依据从北京到上海乘坐G27次高铁列车比T109次特快列车用时少10小时26分钟建立分式方程即可.【详解】解:由题意设G27次高铁列车的平均速度为x

12、km/h,可得.故答案为:.【点睛】本题考查分式方程的实际应用,读懂题意并根据题干所给定的等量关系建立方程是解题的关键.4、2x【分析】直接利用分式的性质化简得出答案【详解】解:2x故答案为:2x【点睛】本题主要考查了约分,正确掌握分式的性质化简是解题关键5、#【分析】将分子因式分解,进而根据分式的性质约分即可【详解】解:故答案为:【点睛】本题考查了分式的约分,掌握分式的性质是解题的关键三、解答题1、(1)原来每天加固河堤80米;(2)整个工程完成后承包方需要支付工资24000元【分析】(1)设原来每天加固河堤米,则采用新的加固模式后每天加固米,然后根据用26天完成了全部加固任务,列方程求解即

13、可;(2)先算出提高工作效率后每天加固的长度,然后进行求解即可【详解】解:(1)设原来每天加固河堤米,则采用新的加固模式后每天加固米 根据题意得:,解这个方程得: 经检验可知,是原分式方程的根,并符合题意; 答:原来每天加固河堤80米;(2)(米)承包商支付给工人的工资为:(元)答:整个工程完成后承包方需要支付工资24000元【点睛】本题主要考查了分式方程的应用,解题的关键在于能够准确找到等量关系列出方程求解2、甲种树苗每棵120元【分析】设甲种树苗每棵x元,根据题意列出分式方程,故可求解【详解】解:设甲种树苗每棵x元依题意列方程:,解得:经检验是所列方程的解且符合题意,答:甲种树苗每棵120

14、元【点睛】此题主要考查分式方程的实际应用,解题的关键是根据题意找到数量关系列出方程求解3、,6【分析】先计算括号内的分式加法,再计算分式的除法,然后将代入计算即可得【详解】解:原式,将代入得:原式【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键4、(1)A种洗手液单价为6元/个,B种洗手液单价为5元/个;(2)A种洗手液最多能购进800个【分析】(1)设B种洗手液的单价为x元/个,则A种洗手液单价为1.2x元/个,根据数量=总价单价结合用3000元购进A、B两种洗手液550个,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)购进A种洗手液m个,则购进B种洗手液(18

15、00-m)个,根据总价=单价数量结合总价不超过9800元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论【详解】解:(1)设B种洗手液的单价为x元/个,则A种洗手液单价为1.2x元/个,根据题意,得:,解得:x=5,经检验,x=5是原方程的解,且符合题意,则1.2x=6答:A种洗手液单价为6元/个,B种洗手液单价为5元/个;(2)设购进A种洗手液m个,则购进B种洗手液(1800-m)个,依题意,得:6m+5(1800-m)9800,解得:m800答:A种洗手液最多能购进800个【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式5、-2【分析】根据分式的乘除运算法则计算即可【详解】解:原式【点睛】本题考查分式的乘除运算,熟练掌握该知识点是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁