2021-2022学年度强化训练北师大版八年级数学下册第五章分式与分式方程课时练习试题.docx

上传人:知****量 文档编号:28171353 上传时间:2022-07-26 格式:DOCX 页数:18 大小:307.74KB
返回 下载 相关 举报
2021-2022学年度强化训练北师大版八年级数学下册第五章分式与分式方程课时练习试题.docx_第1页
第1页 / 共18页
2021-2022学年度强化训练北师大版八年级数学下册第五章分式与分式方程课时练习试题.docx_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2021-2022学年度强化训练北师大版八年级数学下册第五章分式与分式方程课时练习试题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版八年级数学下册第五章分式与分式方程课时练习试题.docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第五章分式与分式方程课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某工程队要修路20千米,原计划平均每天修x千米,实际平均每天多修了0.1千米,则完成任务提前了()A()天

2、B()天C()天D()天2、化简,正确结果是( )ABCD3、雾是由悬浮在大气中微小液滴构成的气溶胶,雾滴的直径多为0.000004m0.00003m其中,0.000004用科学记数法表示为( )A4106B4107C410-6D410-74、已知关于x的分式方程的解是正数,则m的取值范围是( )ABC且D且5、若,则的值为( )ABCD6、下列分式中最简分式是( )ABCD7、两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队共同工作了半个月,总工程全部完成,设乙队单独施工1个月完成总工程的,则可以表示“两队共同工作了半个月完成的工程量”的代数式是( )AB

3、CD8、小明上网查得新冠肺炎病毒的直径大约是106纳米,已知1纳米=0.000001毫米,试用科学记数法表示106纳米,下列正确的是( )A10.6107米B1.0610-7米C10.6106米D1.06106米9、分式有意义,则x满足的条件是( )ABCD10、分式中a和b都扩大10倍,那么分式值()A不变B扩大10倍C缩小10倍D缩小100倍第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的盒子中装有2个白球,若干个黄球,它们除颜色不同外,其余均相同若从中随机摸出一个球,它是白球的概率为,则黄球的个数为_2、已知分式,当x取a时,该分式的值为0;当x取b

4、时,分式无意义,则ab的值等于 _3、约分:=_4、方程的解为_5、如果关于x的方程无解,则k的值为_三、解答题(5小题,每小题10分,共计50分)1、材料:已知,求证证法一:原式证法二:原式证法三:原式阅读上述材料,解决以下问题:(1)已知,求的值;(2)已知,求证2、根据材料完成问题:在含有两个字母的式子中,任意交换两个字母的位置,式子的值始终保持不变,像这样的式子我们称之为对称式,如:,请解决下列问题: ; 这3个式子中只有1个属于对称式: (请填序号);(2)已知若,求对称式的值;若,当0时,求的取值范围3、某经销商用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍

5、,一件A型商品的进价比一件B型商品的进价多10元(1)求一件A,B型商品的进价分别为多少元?(2)若该经销商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,设购进A型商品m件,求该经销商销售这批商品的利润p与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,该经销商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该经销商售完所有商品并捐献慈善资金后获得的最大收益4、计算:(1); (2)5、观察下面等式:;根据你观察到的规律,解决下列

6、问题:(1)写出第n个等式,并证明;(2)计算:-参考答案-一、单选题1、A【分析】工程提前的天数原计划的天数实际用的天数,把相关数值代入即可【详解】解:原计划用的天数为,实际用的天数为, 故工程提前的天数为()天 故选:A【点睛】此题考查了列分式解决实际问题,正确理解题意是解题的关键2、C【分析】根据分式混合运算法则进行化简即可【详解】解:=,故选:C【点睛】本题考查分式的混合运算、平方差公式,熟练掌握分式混合运算法则是解答的关键3、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字

7、前面的0的个数所决定【详解】0.000004=410-6故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、D【分析】先求出分式方程的解,由方程的解是正数得m-20,由x-10,得m-2-10,计算可得答案【详解】解:,m-3=x-1,得x=m-2,分式方程的解是正数,x0即m-20,得m2,x-10, m-2-10,得m3,且,故选:D【点睛】此题考查了利用分式方程的解求参数的取值范围,正确求解分式方程并掌握分式的分母不等于零的性质是解题的关键5、A【分析】根据a和b之间的关系式用a来表示b,再代

8、入所求代数式中计算即可求解【详解】解:,故选:A【点睛】本题考查分式的化简求值,熟练掌握该知识点是解题关键6、C【分析】根据最简分式的定义:在化简结果中,分子和分母已没有公因式,这样的分式称为最简分式逐项判断即得答案【详解】解:A、,不是最简分式,故本选项不符合题意;B、,不是最简分式,故本选项不符合题意;C、是最简分式,故本选项符合题意;D、,不是最简分式,故本选项不符合题意故选:C【点睛】本题考查了分式的约分和最简分式的定义,属于基本题型,熟练掌握上述知识是解题的关键7、D【分析】根据甲队半个月完成的任务量+乙队半个月完成的任务量=两队共同工作了半个月完成的工程量列式求解即可【详解】解:由

9、题意得,两队共同工作了半个月完成的工程量=+=,故选D【点睛】本题考查了分式方程的应用,明确工作量=工作效率工作时间是解答本题的关键8、B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正整数;当原数的绝对值小于1时,n是负整数【详解】解:1纳米=0.000001毫米=0.000000001米,106纳米=0.000000106米=1.06107米故选:B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表

10、示时关键要确定a的值以及n的值9、B【分析】根据分式有意义的条件,分母不为0,即可求解【详解】解:分式有意义,故选B【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件即分母不为0是解题的关键10、C【分析】根据题意分别用10a和10b去代换原分式中的a和b,进而利用分式的基本性质化简即可【详解】解:分别用10a和10b去代换原分式中的a和b,得,故分式的值缩小10倍故选:C【点睛】本题考查分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论二、填空题1、1【分析】设黄球的个数为x个,然后根据概率公式列方程,解此

11、分式方程即可求得答案【详解】解:设黄球的个数为x个,根据题意得:,解得:x=1,经检验,x=1是原分式方程的解,黄球的个数为1个故答案为:1【点睛】此题考查了分式方程的应用,以及概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比2、1【分析】先把x=a代入分式,根据分式值为0得出a+10,求出解得:a1时,该分式的值为0;把x=b代入分式,根据分式无意义,由分母为零,求出b2,再求代数式的值即可【详解】解:分式,当x=a时,当a+10时,解得:a1时,该分式的值为0;当x=b时,当2b0时, 解得:b2,即x2时分式无意义,此时b2,则ab(1)21故答案为:1【点睛】本题考查分式,

12、分式的值为0的条件,分式无意的条件,代数式的值,掌握分式,分式的值为0的条件,分式无意的条件,代数式的值是解题关键3、【分析】先找出分子分母的公因式,然后将分子与分母约去公因式即可【详解】解:,故答案为:【点睛】此题主要考查了约分,找出公因式是解题关键4、x=-3【分析】先去分母,然后再求解方程即可【详解】解:去分母得:,去括号得:,移项、合并同类项得:,经检验:是原方程的解,故答案为【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键5、1【分析】首先将分式方程化为整式方程,表示出整式方程的解,再根据分式方程无解确定x的值,然后再求k的值即可【详解】解:方程去分母得:,解得

13、:,由分式方程无解可得:即,解得:,故答案为:【点睛】本题考查了分式方程无解问题,分两种情况:一种是把分式方程化成整式方程后,整式方程无解;一种是把分式方程化成整式方程后,整式方程有解,但这个解使分式方程的分母为0,是增根,熟练掌握理解这两种情况是解题关键三、解答题1、(1)1(2)见解析【分析】(1)由题意把原式第一项分母里的“1”换为ab,约分后利用同分母分式的加法法则计算即可求出值;(2)根据题意把左边第一、二项分母中的“1”换为abc,约分后再将第一项分母中的“1”换为abc,计算得到结果,与右边相等即可求证(1)解:ab=1,;(2)证明:abc=1,【点睛】本题考查代数式求值以及分

14、式的加法运算,熟练掌握分式的加法运算法则和运用题干所给方法进行求值是解答本题的关键2、(1);(2)5;k【分析】(1)根据对称式的定义进行判断;(2)根据已知m=a+b,n=ab,整体代入即可求解;将对称式化简后整理后,解不等式即可求解;【详解】解:(1)a2-b2b2-a2;a2b2=b2a2;当a0时,由定义知属于对称式的是,故答案为:;(2)(x-a)(x-b)=x2-(a+b)x+ab=x2+mx+n,m=-(a+b),n=ab,a2+b2=(a+b)2-2ab=m2-2n,当m=1,n=-2时,a2+b2=12-2(-2)=5;,当m=-3,n=1时,a+b=3,ab=1,解得:k

15、【点睛】本题考查了分式的化简求值,完全平方公式,解一元一次不等式,新定义等知识,解决本题的关键是理解阅读材料,掌握分式计算法则及完全平方公式3、(1)一件B型商品的进价为150元,则一件A型商品的进价为160元;(2);(3)当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为元根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;(2)根据总利润两种商品的利

16、润之和,列出式子即可解决问题;(3)设利润为元则,分三种情形讨论利用一次函数的性质即可解决问题(1)解:设一件B型商品的进价为x元,则一件A型商品的进价为元,由题意:,解得,经检验是分式方程的解,答:一件B型商品的进价为150元,则一件A型商品的进价为160元;(2)解:客商购进A型商品m件,客商购进B型商品件,由题意:,A型商品的件数不大于B型的件数,且不小于80件,;(3)解:设收益为元,则,当时,即时,w随m的增大而增大,当时,最大收益为元;当,即时,最大收益为17500元;当时,即时,w随m的增大而减小,时,最大收益为元,当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当

17、时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元;当时,该经销商售完所有商品并捐献慈善资金后获得的最大收益为元【点睛】本题主要考查了分式方程的实际应用,一次函数的实际应用,熟练掌握相关知识及寻找题目的等量关系列式求解是解决本题的关键4、(1);(2)【分析】(1)利用完全平方公式、单项式乘以多项式法则解题;(2)利用平方差公式、完全平方公式原式化为,再结合整式的乘除法解题即可【详解】解:(1)(2)【点睛】本题考查整式的乘除,涉及平方差公式、完全平方公式等知识,是重要考点,难度一般,掌握相关知识是解题关键5、(1),证明见详解(2)【分析】(1)根据题意观察等式总结规律可得第n个等式,进而运用分式的加法运算法则进行计算即可求证;(2)根据题意代入条件所给的等式与总结的规律,进而利用分式的乘法进行运算即可.(1)解:;总结规律可得第n个等式为:,证明如下: .(2)解:【点睛】本题考查分式的规律问题以及分式的化简运算,熟练掌握分式的混合运算法则是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁