《2021-2022学年基础强化北师大版八年级数学下册第六章平行四边形专项测试试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版八年级数学下册第六章平行四边形专项测试试题(含解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个正多边形的内角是120,则这个正多边形的边数是()A3B4C5D62、已知三角形三边长分别为7cm,8
2、cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )A46.5cmB22.5cmC23.25cmD以上都不对3、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D84、如图,在ABC和ADE中,ABAC,ADAE,且EADBAC80,若BDC160,则DCE的度数为()A110B118C120D1305、如图所示,ABCD,ADBC,则图中的全等三角形共有( )A1对B2对C3对D4对6、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则AEF的面积为()A2B3C4D57
3、、平行四边形OABC在平面直角坐标系中的位置如图所示,AOC45,OAOC,则点B的坐标为()A(,1)B(1,)C(1,1)D(1,1)8、的周长为32cm,AB:BC=3:5,则AB、BC的长分别为( )A20cm,12cmB10cm,6cmC6cm,10cmD12cm,20cm9、如图,四边形ABCD中,ADBC,点P是对角线BD的中点,E、F分别是AB、CD的中点,若EPF130,则PEF的度数为()A25B30C35D5010、一个正多边形的外角与相邻的内角的度数之比为1:3,则这个多边形的边数是( )A8B9C6D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分
4、)1、如图,是第四套人民币1角硬币,该硬币边缘镌刻的正多边形的外角的度数为_2、若一个多边形的一条对角线把它分成两个四边形,则这个多边形的内角和是_度3、如图,将一个正八边形与一个正六边形如图放置,顶点A、B、C、D四点共线,E为公共顶点则FEG_4、如图,四边形ABCD中,ABCD,ADBC,且BAD、ADC的角平分线AE、DF分别交BC于点E、F若EF2,AB5,则AD的长为_5、若一个多边形的内角和是外角和的倍,则它的边数是_三、解答题(5小题,每小题10分,共计50分)1、如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520的新多边形,求原多边形的边数2、如图1,已
5、知:平行四边形ABCD中,的平分线CE交边AD于E,的平分线BG交CE于F,交AD于G(1)求证:;(2)如图2,若,BF、CE交于点G,写出图中所有等腰直角三角形3、求图(1)(2)中x的值4、如图,在ABC中,ABAC,ADBC于点D(1)若DEAB交AC于点E,证明:ADE是等腰三角形;(2)若BC12,DE5,且E为AC中点,求AD的值5、一个多边形,除一个内角外,其余各内角之和等于2012,求这个内角的度数及多边形的边数-参考答案-一、单选题1、D【分析】设该正多边形为边形,根据多边形的内角和公式,代入求解即可得出结果【详解】解:设该正多边形为边形,由题意得:,解得:,故选:D【点睛
6、】题目主要考查多边形内角和,掌握多边形的内角和公式是解题的关键2、C【分析】如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,则,即可得到DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可【详解】解:如图所示,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是DEF的中位线,DEF的周长,同理可得:GHI的周长,第三次作中位线得到的三角形周长为,第四次作中位线得到的三角形周长为第三次作中位线得到的三角形周长为这五个新三角形的周长之和为,故选C【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理3
7、、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90,根据勾股定理计算,得到答案【详解】解:C=90,CAB+CBA=90,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90,即PDQ=90,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键4、C【分析】先根据四边形的内角和可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质可得,最后根据角的和差即可得【详
8、解】解:在四边形中,即,在和中,故选:C【点睛】本题考查了四边形的内角和、三角形全等的判定定理与性质,正确找出两个全等三角形是解题关键5、D【分析】根据平行四边形的判定与性质,求解即可【详解】解:ABCD,ADBC四边形为平行四边形,、又,、图中的全等三角形共有4对故选:D【点睛】此题考查了平行四边形的判定与性质,全等三角形的判定与性质,解题的关键是掌握平行四边形的判定与性质6、B【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,由此求解即可【详解】解:如图所示,连接AC,四边形ABCD是平行四边形,ADBC,AD=BC,AB=CD,ABCD,E、F分别是B
9、C,CD的中点,故选B【点睛】本题主要考查了平行四边形的性质,与三角形中线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质7、C【分析】作,求得、的长度,即可求解【详解】解:作,如下图:则在平行四边形中,为等腰直角三角形则,解得故选:C【点睛】此题考查了平行四边形的性质,等腰直角三角形的性质以及勾股定理,解题的关键是灵活运用相关性质进行求解8、C【分析】根据平行四边形的性质,可得AB=CD,BC=AD,然后设 ,可得到 ,即可求解【详解】解:四边形ABCD是平行四边形,AB=CD,BC=AD,AB:BC=3:5,可设 ,的周长为32cm, ,即 ,解得: , 故选:C【点睛】本题主要
10、考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键9、A【分析】根据三角形的中位线定理,可得 ,从而PE=PF,则有PEF=PFE,再根据三角形的内角和定理,即可求解【详解】解:点P是对角线BD的中点,E、F分别是AB、CD的中点, ,ADBC,PE=PF,PEF=PFE,EPF130, 故选:A【点睛】本题主要考查了三角形的中位线定理,等腰三角形的性质,三角形的内角和定理,熟练掌握三角形的中位线定理是解题的关键10、A【分析】设每个内角与它相邻的外角的度数分别为3x、x,根据邻补角的定义得到x3x180,解出x45,然后根据多边形的外角和为360即可计算出多边形的边数【详解】解
11、:设每个内角与它相邻的外角的度数分别为3x、x,x3x180,x45,故这个多边形的边数8故选:A【点睛】本题考查了多边形的外角定理:多边形的外角和为360也考查了邻补角的定义二、填空题1、40【分析】先判断是正多边形的边数,再根据正多边形的性质外角都相等,利用外角和边数求解即可【详解】解:硬币边缘镌刻的正多边形是正九边形,外角和360,该硬币边缘镌刻的正多边形的外角的度数为3609=40,故答案为:40【点睛】本题考查正多边形的外角,掌握正多边形的识别,多边形外角和,正多边形外角性质是解题关键2、720【分析】根据一个多边形被一条对角线分成两个四边形,可得多边形的边数,根据多边形的内角和定理
12、,可得答案【详解】解:由题意,得两个四边形有一条公共边,得多边形是,由多边形内角和定理,得故答案为:720【点睛】本题考查了多边形的对角线,利用了多边形内角和定理,解题的关键是注意对角线是两个四边形的公共边3、30【分析】根据多边形的内角和,分别得出ABE=BEF=135,DCE=CEG=120,再根据三角形的内角和算出BEC,得出FEG=360-BEF-CEG-BEC即可【详解】解:由多边形的内角和可得,ABE=BEF=135,EBC=180-ABE=180-135=45,DCE=CEG=120,BCE=180-DCE=60,由三角形的内角和得:BEC=180-EBC-BCE=180-45-
13、60=75,FEG=360-BEF-CEG-BEC=360-135-120-75=30故答案为:30【点睛】本题考查了多边形的内角和定理,熟记各图形的性质并准确识图是解题的关键4、8【分析】根据题意由平行线的性质得到ADFDFC,再由DF平分ADC,得ADFCDF,则DFCFDC,然后由等腰三角形的判定得到CFCD,同理BEAB,则四边形ABCD是平行四边形,最后由平行四边形的性质得到ABCD,ADBC,即可得到结论【详解】解:ADBC,ADFDFC,DF平分ADC,ADFCDF,DFCCDF,CFCD,同理BEAB,ABCD,ADBC,四边形ABCD是平行四边形,ABCD,ADBC,ABBE
14、CFCD5,BCBE+CFEF5+528,ADBC8,故答案为:8【点睛】本题考查等腰三角形的判定和性质和平行线的性质以及平行四边形的性质等知识,解答本题的关键是熟练掌握平行线的性质以及平行四边形的性质5、【分析】根据多边形的内角和公式(n2)180以及外角和定理列出方程,然后求解即可【详解】解:设这个多边形的边数是n,根据题意得,(n2)1802360,解得n6答:这个多边形的边数是6故答案为:6【点睛】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360三、解答题1、15【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原
15、多边形多1条边,可得答案【详解】设新多边形是n边形,由多边形内角和公式得:,解得:,则原多边形的边数是:原多边形的边数是15【点睛】本题主要考查了多边形内角与外角,解决本题的关键是要熟练掌握多边形的内角和公式2、(1)见解析;(2),【分析】(1)根据平行四边形的性质及角平分线的性质,证出与是等腰三角形,得出,则可证得结论;(2)根据矩形的判定与性质,结合(1)中的,可证得和是等腰直角三角;由角平分线的性质可得出,从而可证得是等腰直角三角形;根据全等三角形的判定与性质可得出,由对顶角相等可得到,则答案可解【详解】(1)证明:四边形是平行四边形,又BF平分,平分,即(2),是等腰直角三角形证明:
16、四边形是平行四边形,四边形是矩形,由(1)可知,和是等腰直角三角又BF平分,平分,,, ,是等腰直角三角形;由(1)可知,在和中,,,是等腰直角三角形【点睛】本题考查了平行四边形的性质、角平分线的性质、全等三角形的判定与性质以及等腰三角形的判定等知识,灵活运用这些性质是解决本题的关键3、图(1)70;图(2)100【分析】图(1)根据三角形的一个外角等于与它不相邻的两个内角的和,图(2)根据四边形的内角和等于360,即可求解【详解】解:由图(1)得: ,解得: ;由图(2)得: 解得:【点睛】本题主要考查了三角形的外角性质,四边形的内角和定理,熟练掌握三角形的一个外角等于与它不相邻的两个内角的
17、和;四边形的内角和等于360是解题的关键4、(1)见解析;(2)8【分析】(1)根据“三线合一”性质先推出BAD=CAD,再结合平行线的性质推出BAD=ADE,从而得到ADE=EAD,即可根据“等角对等边”证明;(2)根据题意结合中位线定理可先推出AC=2DE,然后在RtADC中利用勾股定理求解即可【详解】(1)证:在ABC中,ABAC,ABC为等腰三角形,ADBC于点D,由“三线合一”知:BAD=CAD,DEAB交AC于点E,BAD=ADE,CAD=ADE,即:ADE=EAD,AE=DE,ADE是等腰三角形;(2)解:由“三线合一”知:BD=CD,BC=12,DC=6,E为AC中点,DE为A
18、BC的中位线,AB=2DE,AC=AB=2DE=10,在RtADC中,AD=8【点睛】本题考查等腰三角形的性质与判定,勾股定理解三角形,以及三角形的中位线定理等,掌握等腰三角形的基本性质,熟练运用中位线定理和勾股定理计算是解题关键5、这个内角的度数是148,边数为14【分析】根据多边形内角和定理:且为整数),可得:多边形的内角和一定是的倍数,而多边形的内角一定大于,并且小于,用2012除以180,根据商和余数的情况,求出这个多边形的边数与2的差是多少,即可求出这个多边形的边数,再用这个多边形的内角和减去,求出这个内角的度数是多少即可【详解】解:,这个多边形的边数与2的差是12,这个多边形的边数是:,这个内角的度数是:答:这个内角的度数为,多边形的边数为14【点睛】本题主要考查了多边形的内角和,解题的关键是要明确多边形内角和定理:且为整数)