《2021-2022学年基础强化北师大版八年级数学下册第六章平行四边形综合测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版八年级数学下册第六章平行四边形综合测试试题(含详细解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个正多边形的每个外角都等于45,则这个多边形的边数和对角线的条数分别是( )A8,20B10,35C6,9D
2、5,52、如图,求A+B+C+D+E+F( )A90B130C180D3603、一个n边形的所有内角之和是900,则n的值是( )A5B7C9D104、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D45、已知一个多边形的外角都等于,那么这个多边形的边数为( )A6B7C8D96、从一个多边形的顶点出发,可以作2条对角线,则这个多边形的内角和是( )ABCD7、如图,正五边形ABCDE的对角线AC、BD交于点P,那么( )A96
3、B100C108D1158、如图,在RtABC中,ACB90,AC1,AB4,点D是斜边AB的中点,以CD为底边在其右侧作等腰三角形CDE,使CDEA,DE交BC于点F,则EF的长为()A3BCD3.59、某多边形的内角和比外角和多180度,这个多边形的边数( )A3B4C5D610、一个多边形的内角和是外角和的5倍,则这个多边形是()A12B11C10D9第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,D,E分别是边AB,AC的中点,B50现将ADE沿DE折叠点A落在三角形所在平面内的点为A1,则BDA1的度数为 _2、已知一个正五边形其一个内角的度
4、数为 _3、一个正多边形的每个外角都是45,则这个正多边形是正_边形4、一个多边形的每一个外角都等于36,则这个多边形的边数n等于_5、一个正多边形的每个内角都等于,那么它的内角和是_三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD是平行四边形,BAC90(1)尺规作图:在BC上截取CE,使CECD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论2、如图1,在ABC中,ABAC,BAC,点D、E分别在边AB、AC上,ADAE,连接DC,点F、P、G分别为DE、DC、
5、BC的中点(1)观察猜想:图1中,线段PF与PG的数量关系是 ,FPG (用含的代数式表示)(2)探究证明:当ADE绕点A旋转到如图2所示的位置时,小新猜想(1)中的结论仍然成立,请你证明小新的猜想3、已知:ABCD的对角线AC,BD相交于O,M是AO的中点,N是CO的中点,求证:BMDN,BM=DN4、如图在平面直角坐标系中,点A(-2,0),B(2,3),C(0,4)(1)判断ABC的形状,并说明理由;(2)点D为平面直角坐标系中的点,以A、B、C、D为顶点的四边形为平行四边形,写出所有满足条件的点D的坐标5、一个多边形的每个外角为60,求这个多边形的内角和-参考答案-一、单选题1、A【分
6、析】利用多边形的外角和是360度,正多边形的每个外角都是45,求出这个多边形的边数,再根据一个多边形有条对角线,即可算出有多少条对角线【详解】解:正多边形的每个外角都等于45,36045=8,这个正多边形是正8边形,=20(条),这个正多边形的对角线是20条故选:A【点睛】本题主要考查的是多边的外角和,多边形的对角线及正多边形的概念和性质,任意多边形的外角和都是360,和边数无关正多边形的每个外角都相等任何多边形的对角线条数为条2、D【分析】连接AD,由三角形内角和外角的关系可知E+FADE+DAF,由四边形内角和是360,即可求BAF+B+C+CDE+E+F360【详解】解如图,连接AD,1
7、E+F,1ADE+DAF,E+FADE+DAF,BAD+B+C+CDA360,BAF+B+C+CDE+E+F360BAF+B+C+CDE+E+F360故选:D【点睛】本题考查三角形的外角的性质、四边形内角和定理等知识,解题的关键是灵活应用所学知识解决问题,属于基础题3、B【分析】根据n边形内角和公式即可得到,由此进行求解即可【详解】解:一个n边形的所有内角之和是900,故选B【点睛】本题主要考查了多边形内角和公式,解题的关键在于能够熟练掌握多边形内角和公式4、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=F
8、C,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于
9、中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键5、D【分析】根据多边形外角公式,代入角度求出n即可【详解】外角故多边形边数为9故选D【点睛】本题考查多边形外角公式,掌握该公式是本题解题关键6、D【分析】根据从多边形的一个顶点可以作对角线的条数公式(n3)求出边数,然后根据多边形的内角和公式(n2)180列式进行计算即可得解【详解】解:多边形从一个顶点出发可引出2条对角线,n3=2,解得:n=5,内角和=(52)180=540故选:D【点睛】本题考查了多边形的内角和公式能够利用多边形的对角线的公式,求出多边形的边数是解题的关键7、C【分析】先根据正多边形的内角和求出的
10、度数,再根据三角形的内角和定理可得的度数,同样的方法可得的度数,然后根据三角形的内角和定理、对顶角相等即可得【详解】解:五边形是正五边形,同理可得:,故选:C【点睛】本题考查了正多边形的内角和,熟练掌握正多边形的内角和是解题关键8、D【分析】根据勾股定理求出BC,根据直角三角形的性质得到CD=AD,证明ACDF,根据勾股定理计算,得到答案【详解】解:在RtABC中,ACB=90,AC=1,AB=4,则BC=,在RtABC中,ACB=90,点D是斜边AB的中点,CD=AB=AD,DCA=A,CDE=A,CDE=DCA,ACDF,EFC=ACB=90,ACDF,点D是斜边AB的中点,DF=AC=,
11、CF=BC=,设EF=x,则ED=x+=CE,在RtEFC中,EC2=EF2+CF2,即(x+)2=x2+()2,解得:x=3.5,即EF=3.5,故选:D【点睛】本题考查的是勾股定理、直角三角形的性质,等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c29、C【分析】要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解【详解】解:设这个多边形是n边形则180(n-2)=180+360,解得n=5,答:此多边形的边数是5故选:C【点睛】本题考查多边形的内角和与外角和、方程的思想关键是记住内角和的公式与外角和的特征10、A【分析】设这个多
12、边形的边数为n,依据多边形的内角和是它的外角和的5倍列方程,即可得到n的值【详解】解:设这个多边形的边数为n,依题意得(n-2)180=5360,解得n=12,这个多边形是十二边形,故选:A【点睛】本题主要考查了多边形的内角和与外角和,解题时注意:多边形的外角和等于360二、填空题1、80【分析】由翻折的性质得ADEA1DE,由中位线的性质得DE/BC,由平行线的性质得ADEB50,即可解决问题【详解】解:由题意得:ADEA1DE;D、E分别是边AB、AC的中点,DE/BC,ADEBA1DE50,A1DA100,BDA118010080故答案为:80【点睛】本题主要考查了翻折变换及其应用问题;
13、同时还考查了三角形的中位线定理等几何知识点熟练掌握各性质是解题的关键2、#【分析】先由正五边形的外角和为及每一个外角都相等求解一个外角,再根据这个外角与相邻的内角互补,从而可得答案.【详解】解:由正五边形的每一个外角都相等, 正五边形的每一个外角 正五边形的每一个内角为: 故答案为:【点睛】本题考查的是正多边形的内角,外角的性质,掌握正多边形的外角和为,每一个外角都相等是解本题的关键.3、八【分析】根据多边形的外角和等于即可得【详解】解:因为多边形的外角和等于,所以这个正多边形的边数是,即这个正多边形是正八边形,故答案为:八【点睛】本题考查了多边形的外角和,熟记多边形的外角和等于是解题关键4、
14、10【分析】根据多边形的外角和是360,即可求解【详解】解:一个多边形的每一个外角都等于36,多边形的边数为3603610故答案为:10【点睛】本题主要考查了多边形的外角和,熟练掌握多边形的外角和是360是解题的关键5、720【分析】先求出这个多边形的每一个外角的度数,再用360除以每一个外角的度数即可得到边数,然后根据多边形内角和公式进行求解即可【详解】解:正多边形的各个内角都等于120,正多边形的每一个外角都等于180-120=60,边数为36060=6正多边形的内角和= 故答案为:720【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键三、解答题1、(1)图形见解
15、析;(2),证明见解析【分析】(1)以C为圆心CD长为半径画弧于BC交点即为E;连DE与AC交点即为F;过F作AD的垂直平分线与AD交点即为M;(2)证明DF平分,再利用角平分线的性质判定即可【详解】(1)图形如下:(2),证明如下:由(1)可得:,CECD四边形ABCD是平行四边形ADBC,ABCD,即DF平分BAC90【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定与性质2、(1)PFPG,180;(2)见解析【分析】(1)根据等腰三角形的性质和三角形中位线定理解答即可;(2)连接
16、BD,CE,利用全等三角形的判定和性质以及三角形中位线定理解答即可【详解】解:(1)如图1:中,,点,分别在边,上,即点,分别为,中点,点,分别为,中点,故答案为:;(2)如图2,连接BD,CE,由题意知ABAC,BADCAE,ADAE,ABDACE(SAS),BDCE,ABDACE,点F、P、G分别为DE、DC、BC的中点,PF,PG分别是CDE和CDB的中位线,PFPGPGBD,PFCE,PGCDBC,DPFDCE,FPGDPFDPGDCEPGCDCBACDACEDBCDCBACDABDDBCDCBABCACB,ABCACB180BACFPG180;【点睛】本题属于几何变换综合题,关键是根
17、据三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判定和性质进行解答3、见解析【分析】连接,根据平行四边形的性质可得AO=OC,DO=OB,由M是AO的中点,N是CO的中点,进而可得MO=ON,进而即可证明四边形是平行四边形,即可得证【详解】如图,连接,四边形ABCD为平行四边形,AO=OC,DO=OBM为AO的中点,N为CO的中点,即MO=ON四边形是平行四边形,BMDN,BM=DN【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键4、(1)ACB是直角三角形,理由见解析;(2)D1(0,-1),D2(-4,1),D3(4,7)【分析】(1)根据勾股
18、定理的判定即可确定ABC的形状;(2)根据平行四边的性质与判定定理,结合图形,即可得出答案【详解】解:(1) , ACB是直角三角形;(2) D1(0,-1),D2(-4,1),D3(4,7)【点睛】本题考查了直角三角形的判定,平行四边形的性质和判定,平面直角坐标系中点的坐标,解题的关键结合平行四边形的性质写出点的坐标5、【分析】先根据外角和为360求得多边形的边数,进而根据外角和内角互补即可求得每一个内角的度数,进而求得内角和【详解】一个多边形的每个外角为60,这个多边形的边数为,这个多边形的每一个内角为这个多边形的内角和为【点睛】本题考查了多边形的内角和,多边形的外角和,求得多边形的边数是解题的关键