《2021-2022学年北师大版八年级数学下册第六章平行四边形专项攻克试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年北师大版八年级数学下册第六章平行四边形专项攻克试题(含解析).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点O是ABCD的对称中心,l是过点O的任意一条直线,它将平行四边形分成甲、乙两部分,在这个图形上做扎针试
2、验,则针头扎在甲、乙两个区域的可能性的大小是( )A甲大B乙大C一样大D无法确定2、如图,D、E分别为ABC的边AB、AC的中点连接DE,过点B作BF平分ABC,交DE于点F若EF4,AD7,则BC的长为()A22B20C18D163、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD12,则DOE的周长是( )A12B15C18D244、若一个多边形的每一个内角均为120,则下列说法错误的是( )A这个多边形的内角和为720B这个多边形的边数为6C这个多边形是正多边形D这个多边形的外角和为3605、如图,M、N分别是正五边形ABCDE的边BC、CD上的点
3、,且BM=CN,AM交BN于点P,则APN的度数是( )A120B118C110D1086、如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则1+2()A90B180C270D3607、如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F, ,则 ABCD的面积为( ) A24B32C40D488、一个n边形的所有内角之和是900,则n的值是( )A5B7C9D109、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中
4、,DF的最小值是( )A1B1.5C2D410、已知一个正多边形的一个外角为36,则这个正多边形的内角和是( )A360B900C1440D1800第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个多边形的一条对角线把它分成两个四边形,则这个多边形的内角和是_度2、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 _3、如图,在四边形ABCD中,在边AB,BC上分别找一点E,F使周长最小,此时_4、正多边形的一个内角等于144,则这个多边形的边数是 _ 5、在平行四边形ABCD中,BF平分ABC,交AD于点F,CE平分BCD,交AD于点E,AB=6,EF=
5、2,则BC的长为_三、解答题(5小题,每小题10分,共计50分)1、在Rt中,将绕点C顺时针旋转一定的角度得到,点A、B的对应点分别是D、E(1)当点E恰好在AC上时,如图1,求的大小;(2)若时,点F是边AC中点,如图2,猜想四边形BEDF的形状并说明理由2、(教材呈现)如图是华师版九年级上册数学教材第77页的部分内容(定理证明)(1)请根据教材内容,结合图,写出证明过程(定理应用)(2)如图,四边形中,、分别为、的中点,边、延长线交于点,则的度数是_(3)如图,矩形中,点在边上,且将线段绕点旋转一定的角度,得到线段,是线段的中点,直接写出旋转过程中线段长的最大值和最小值3、已知:如图,在中
6、,求证:互相平分4、已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法)5、ABC和GEF都是等边三角形问题背景:如图1,点E与点C重合且B、C、G三点共线此时BFC可以看作是AGC经过平移、轴对称或旋转得到请直接写出得到BFC的过程迁移应用:如图2,点E为AC边上一点(不与点A,C重合),点F为ABC中线CD上一点,延长GF交BC于点H,求证:联系拓展:如图3,AB12,点D,E分别为AB、AC的中点,M为线段BD上靠近点B的三等分点,点F在射线DC上运动(E、F、G三点按顺时针排列)当最小时,则MDG的面积为_-参考答案-一、单选题1、C【分析】如图,连接 记过的直线交于
7、则为的中点,再证明 可得 从而可得答案.【详解】解:如图,连接 记过的直线交于 为ABCD的对称中心,为的中点, 同理: 所以针头扎在甲、乙两个区域的可能性的大小是一样的,故选C【点睛】本题考查的是全等三角形的判定与性质,平行四边形的性质,随机事件发生的可能性的大小,几何概率的意义,理解几何概率的意义是解本题的关键.2、A【分析】根据D、E分别为ABC的边AB、AC的中点,可得DE是ABC的中位线,则,然后证明ABF=DFB,得到DF=BD=7,则DE=DF+EF=11,再由,进行求解即可【详解】解:D、E分别为ABC的边AB、AC的中点,DE是ABC的中位线,DFB=CBF,BF平分ABC,
8、ABF=CBF,ABF=DFB,DF=BD=7,DE=DF+EF=11,故选A【点睛】本题主要考查了三角形中位线定理,等腰三角形的性质与判定,角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握三角形中位线定理3、B【分析】根据平行四边形的对边相等和对角线互相平分可得,OBOD,又因为E点是CD的中点,可得OE是BCD的中位线,可得OEBC,所以易求DOE的周长【详解】解:ABCD的周长为36,2(BCCD)36,则BCCD18四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD12,ODOBBD6又点E是CD的中点,OE是BCD的中位线,DECD,OEBC,DOE的周长OD
9、OEDEBD(BCCD)6915,故选:B【点睛】本题考查了三角形中位线定理、平行四边形的性质解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质4、C【分析】先根据多边形的外角和求出这个多边形的边数,再根据多边形的内角和、正多边形的定义即可得【详解】解:多边形的每一个内角均为,这个多边形的每一个外角均为,这个多边形的边数为,则选项B说法正确;这个多边形的内角和为,则选项A说法正确;多边形的外角和为,选项D说法正确;各边相等,各内角也相等的多边形叫做正多边形,选项C说法错误;故选:C【点睛】本题考查了多边形的内角和与外角和、正多边形的定义,熟练掌握多边形的内角和与外角和是
10、解题关键5、D【分析】由五边形的性质得出AB=BC,ABM=C,证明ABMBCN,得出BAM=CBN,由BAM+ABP=APN,即可得出APN=ABC,即可得出结果【详解】解:五边形ABCDE为正五边形,AB=BC,ABM=C,在ABM和BCN中,ABMBCN(SAS),BAM=CBN,BAM+ABP=APN,CBN+ABP=APN=ABC= APN的度数为108;故选:D【点睛】本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键6、C【分析】首先根据三角形内角和定理算出的度数,再根据四边形内角和为,计算出的度数【详解】解:,故选:C【点
11、睛】本题主要考查了三角形内角和定理,多边形内角和定理,解题的关键是利用三角形的内角和,四边形的内角和7、B【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得【详解】解:四边形是平行四边形,在和中,则的面积为,故选:B【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键8、B【分析】根据n边形内角和公式即可得到,由此进行求解即可【详解】解:一个n边形的所有内角之和是900,故选B【点睛】本题主要考查了多边形内角和公式,解题的关键在于能够熟练掌握多边形内角和公式
12、9、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:
13、C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键10、C【分析】由正多边形的外角为36,可求出这个多边形的边数,再根据多边形内角和公式(n2)180,计算该正多边形的内角和.【详解】解:一个正多边形的外角等于36,这个多边形的边数为36036=10,这个多边形的内角和=(102)180=1440,故选:C.【点睛】本题考查多边形的外角和、内角和,理解和掌握多边形的外角和、内角和的计算方法是解决问题的关键.二、填空题1、720【分析
14、】根据一个多边形被一条对角线分成两个四边形,可得多边形的边数,根据多边形的内角和定理,可得答案【详解】解:由题意,得两个四边形有一条公共边,得多边形是,由多边形内角和定理,得故答案为:720【点睛】本题考查了多边形的对角线,利用了多边形内角和定理,解题的关键是注意对角线是两个四边形的公共边2、6【分析】根据内角和等于外角和的2倍则内角和是720利用多边形内角和公式得到关于边数的方程,解方程就可以求出多边形的边数【详解】解:根据题意,得(n2)1803602,解得:n6故这个多边形的边数为6故答案为:6【点睛】本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题
15、来解决3、112度【分析】如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点即为所求,利用轴对称的性质结合四边形的内角和即可得出答案【详解】解:如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求 四边形ABCD中, , 由轴对称知,ADE=P,CDF=Q, 在PDQ中,P+Q=180-ADC =, ADE+CDF=P+Q=34, 故答案为【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及四边形的内角和定理等知识,根据已知得出E,F的位置是解题关键4、10【分析】先根据已
16、知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可【详解】解:设这个正多边形是正n边形,根据题意得:(n-2)180=144n,解得:n=10故答案为:10【点睛】本题考查了正多边形的内角,在解题时要根据正多边形的内角和公式列出式子是本题的关键5、10或14或10【分析】利用BF平分ABC, CE平分BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可【详解】解: 四边形ABCD是平行四边形,BF平分ABC, CE平分BCD, , 由等角对等边可知:, 情况1:当与相交时,如下图所示:, ,情况2:当与不相交时,如下图所示:,故答案为
17、:10或14【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况三、解答题1、(1);(2)四边形BEDF是平行四边形,见解析【分析】(1)根据旋转的性质可得,根据三角形内角和定理求得,根据余角的定义即可求得的大小;(2)连接AD,证明和为等边三角形,进而证明,得到,结合,即可证明四边形BEDF是平行四边形【详解】(1)解:绕点C顺时针旋转得到,点E恰好在AC上,;(2)四边形BEDF是平行四边形理由如下:如图2,连接AD点F是边AC中点,绕点C顺时针旋转60得到,和为等边三角形,
18、又点F为的边AC的中点,在和中,而,四边形BEDF是平行四边形【点睛】本题考查了旋转的性质,含30度角的直角三角形的性质,等边三角形的性质与判定,三角形全等的性质与判定,平行四边形的判定,掌握以上知识是解题的关键2、(1)见解析;(2);(3)长的最大值为,最小值为【分析】(1)延长至,使,连接,根据题意证明,然后证明四边形为平行四边形,即可得出,;(2)首先根据三角形外角的性质得到,然后由三角形中位线的性质得到,可得到,由即可求出的度数(3)延长至,使,连接,可得,可得当FH最小或最大时,MB最小或最大,由题意可得当点在线段上时,最小,当点在线段的延长线上时,最大,根据勾股定理求出AH的长度
19、,然后即可求出线段长的最大值和最小值【详解】(1)证明:延长至,使,连接,在和中,四边形为平行四边形,;(2)、分别为、的中点,是DAB的中位线,是BCD的中位线,又,;(3)解:延长至,使,连接,由勾股定理得,当点在线段上时,最小,最小值为,当点在线段的延长线上时,最大,最大值为,长的最大值为,最小值为【点睛】此题考查了三角形中位线的性质,勾股定理的运用,线段最值问题,平行四边形的判定和性质,解题的关键是熟练掌握三角形中位线的性质,平行四边形的判定和性质,勾股定理3、证明见解析【分析】连接,由三角形中位线定理可得,可证四边形ADEF是平行四边形,由平行四边形的性质可得AE,DF互相平分;【详
20、解】证明:连接,ADDB,BEEC,BEEC,AFFC,四边形ADEF是平行四边形,AE,DF互相平分【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键4、见解析【分析】将不规则图形面积分为面积相等的两部分,将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件【详解】解:(1)如图所示,将图形分成两个平行四边形,分别连接两个平行四边形的对角线,产生两个交点,将两个交点连接即可得;(2)如图所示,将图形分成两个平行四边形,分别连接两个平行四边形的对角线,产生两个交
21、点,将两个交点连接即可得;(3)如图所示,将不规则图形补全,然后按照(1)(2)方法,分别连接两个平行四边形的对角线,产生两个交点,将两个交点连接即可得;【点睛】题目主要考查中心对称图形的应用及平行四边形的性质,理解题意,掌握中心对称图形的应用是解题关键5、(1)以点C为旋转中心将逆时针旋转就得到;(2)见解析;(3)【分析】(1)只需要利用SAS证明BCFACG即可得到答案;(2)法一:以为边作,与的延长线交于点K,如图,先证明,然后证明, 得到,则,过点F作FMBC于M,求出,即可推出,则,即:;法二:过F作,先证明FCNFCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性质求出
22、,再证明 得到,则;(3)如图3-1所示,连接,GM,AG,先证明ADE是等边三角形,得到DE=AE,即可证明得到,即点G在的角平分线所在直线上运动过G作,则,最小即是最小,故当M、G、P三点共线时,最小;如图3-2所示,过点G作GQAB于Q,连接DG,求出DM和QG的长即可求解【详解】(1)ABC和GEF都是等边三角形,BC=AC,CF=CG,ACB=FCG=60,ACB+ACF=FCG+ACF,FCB=GCA,BCFACG(SAS),BFC可以看作是AGC绕点C逆时针旋转60度所得;(2)法一:证明:以为边作,与的延长线交于点K,如图,和均为等边三角形,GFE=60,EFH+ACB=180
23、, 是等边的中线,在与中, ,过点F作FMBC于M,KM=CM,K=30,即:;法二证明:过F作,是等边的中线,FCNFCM(AAS),FC=2FN,CM=CN,同法一,在与中, ,;(3)如图3-1所示,连接,GM,AG,D,E分别是AB,AC的中点,DE是ABC的中位线,CDAB,DEBC,CDA=90,ADE=ABC=60,AED=ACB=60,ADE是等边三角形,FDE=30,DE=AE,GEF是等边三角形,EF=EG,GEF=60,AEG=AED+DEG=FEG+DEG=FED,即点G在的角平分线所在直线上运动过G作,则,最小即是最小,当M、G、P三点共线时,最小如图3-2所示,过点G作GQAB于Q,连接DG,QG=PG,MAP=60,MPA=90,AMP=30,AM=2AP,D是AB的中点,AB=12,AD=BD=6,M是BD靠近B点的三等分点,MD=4,AM=10,AP=5,又PAG=30,AG=2GP,【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,含30度角的直角三角形的性,勾股定理,解题的关键在于能够正确作出辅助线求解