《2022年最新人教版八年级数学下册第十八章-平行四边形专项训练试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版八年级数学下册第十八章-平行四边形专项训练试卷(无超纲带解析).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十八章-平行四边形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在四边形中,面积为21,的垂直平分线分别交于点,若点和点分别是线段和边上的动点,则的最小值为( )A5
2、B6C7D82、下列说法正确的是()A平行四边形的对角线互相平分且相等B矩形的对角线相等且互相平分C菱形的对角线互相垂直且相等D正方形的对角线是正方形的对称轴3、如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则AEF的面积为()A2B3C4D54、如图,点E是ABC内一点,AEB90,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点若AB6,EF1,则线段AC的长为()A7BC8D95、下列命题正确的是( )A对角线相等的四边形是平行四边形B对角线相等的四边形是矩形C对角线互相垂直的平行四边形是菱形D对角线互相垂直且相等的四边形是正方形6、菱形ABCD的
3、周长是8cm,ABC60,那么这个菱形的对角线BD的长是()AcmB2cmC1cmD2cm7、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD12,则DOE的周长是( )A12B15C18D248、已知直线,点P在直线l上,点,点,若是直角三角形,则点P的个数有( )A1个B2个C3个D4个9、在ABCD中,添加以下哪个条件能判断其为菱形( )AABBCBBCCDCCDACDACBD10、如图,矩形ABCD中,AC交BD于点O,且AB=24,BC=10,将AC绕点C顺时针旋转90至CE连接AE,且F、G分别为AE、EC的中点,则四边形OF
4、GC的面积是( )A100B144C169D225第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知正方形ABCD的边长为6,E、F分别是AB、BC边上的点,且EDF45,将DAE绕点D逆时针旋转90,得到DCM若AE2,则FM的长为 _2、如图,直线l经过正方形ABCD的顶点B,点A,C到直线l的距离分别是1,3,则正方形ABCD的面积是 _3、如图,平面直角坐标系中,有,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为_4、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_5、如图,在矩形ABCD中,对角线AC,BD相交于O,EF
5、过点O分别交AB,CD于E,F,已知AB8cm,AD5cm,那么图中阴影部分面积为_cm2三、解答题(5小题,每小题10分,共计50分)1、如图1,在平面直角坐标系中,且;(1)试说明是等腰三角形;(2)已知写出各点的坐标:A( , ),B( , ),C( , )(3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止若的一条边与BC平行,求此时点M的坐标;若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点的坐标;若不能,请说明理由2、如图,在RtABC中,ACB90(1
6、)作AB的垂直平分线l,交AB于点D,连接CD,分别作ADC,BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形3、如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点(1)求证:;(2)当时,在不添加辅助线的情况下,直接写出图中等于的2倍的所有角4、我们知道正多边形的定义是:各边相等,各角也相等的多边形叫做正多边形(1)如图,在各边相等的四边形ABCD中,当ACBD时,四边形ABCD 正四边形;(填“是”或“不是”)(2)如图,在各边相等的五边形ABCDE中,ACCEEBBDDA,求证:五边形ABCDE是正五边形;(3)如图,在
7、各边相等的五边形ABCDE中,减少相等对角线的条数也能判定它是正五边形,问:至少需要几条对角线相等才能判定它是正五边形?请说明理由5、如图,将长方形ABCD沿着对角线BD折叠,使点C落在C处,BC交AD于点E(1)试判断BDE的形状,并说明理由;(2)若AB=6,BC=18,求BDE的面积-参考答案-一、单选题1、C【解析】【分析】连接AQ,过点D作,根据垂直平分线的性质得到,再根据计算即可;【详解】连接AQ,过点D作,面积为21,MN垂直平分AB,当AQ的值最小时,的值最小,根据垂线段最短可知,当时,AQ的值最小,的值最小值为7;故选C【点睛】本题主要考查了四边形综合,垂直平分线的性质,准确
8、分析计算是解题的关键2、B【解析】【分析】根据平行四边形、矩形、菱形、正方形的性质定理判断即可【详解】解:平行四边形的对角线互相平分,不一定相等,A错误;矩形的对角线相等且互相平分,B正确;菱形的对角线互相垂直,不一定相等,C错误;正方形的对角线所在的直线是正方形的对称轴,D错误;故选:B【点睛】本题考查了命题的真假判断,掌握平行四边形、矩形、菱形、正方形的性质是解题的关键3、B【解析】【分析】连接AC,由平行四边形的性质可得,再由E、F分别是BC,CD的中点,即可得到,由此求解即可【详解】解:如图所示,连接AC,四边形ABCD是平行四边形,ADBC,AD=BC,AB=CD,ABCD,E、F分
9、别是BC,CD的中点,故选B【点睛】本题主要考查了平行四边形的性质,与三角形中线有关的面积问题,解题的关键在于能够熟练掌握平行四边形的性质4、C【解析】【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长【详解】解:AEB90,D是边AB的中点,AB6,DEAB3,EF1,DFDE+EF3+14D是边AB的中点,点F是边BC的中点,DF是ABC的中位线,AC2DF8故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键5、C【解析】【分析】根据平行四边形、矩形、菱形以及正方形的判定方法,
10、对选项逐个判断即可【详解】解:A、对角线互相平分的四边形是平行四边形,选项错误,不符合题意;B、对角线相等平行四边形是矩形,选项错误,不符合题意;C、对角线互相垂直的平行四边形是菱形,选项正确,符合题意;D、对角线互相垂直且相等的平行四边形是正方形,选项错误,不符合题意;故选C【点睛】此题考查了平行四边形、矩形、菱形以及正方形的判定,掌握它们的判定方法是解题的关键6、B【解析】【分析】由菱形的性质得ABBC2(cm),OAOC,OBOD,ACBD,再证ABC是等边三角形,得ACAB2(cm),则OA1(cm),然后由勾股定理求出OB(cm),即可求解【详解】解:菱形ABCD的周长为8cm,AB
11、BC2(cm),OAOC,OBOD,ACBD,ABC60,ABC是等边三角形,ACAB2cm,OA1(cm),在RtAOB中,由勾股定理得:OB(cm),BD2OB2(cm),故选:B【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法7、B【解析】【分析】根据平行四边形的对边相等和对角线互相平分可得,OBOD,又因为E点是CD的中点,可得OE是BCD的中位线,可得OEBC,所以易求DOE的周长【详解】解:ABCD的周长为36,2(BCCD)36,则BCCD18四边形ABCD是平行四边形,对角线AC,BD相交于点O
12、,BD12,ODOBBD6又点E是CD的中点,OE是BCD的中位线,DECD,OEBC,DOE的周长ODOEDEBD(BCCD)6915,故选:B【点睛】本题考查了三角形中位线定理、平行四边形的性质解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质8、C【解析】【分析】分别讨论,三种情况,求出点坐标即可得出答案【详解】如图,当时,点与点横坐标相同,代入中得:,当时,点与点横坐标相同,代入中得:,当时,取中点为点,过点作交于点,设,在中,解得:,点有3个故选:C【点睛】本题考查直角三角形的性质与平面直角坐标系,掌握分类讨论的思想是解题的关键9、D【解析】【分析】根据对角线
13、互相垂直的平行四边形是菱形,结合选项找到对角线互相垂直即可求解【详解】A、ABBC,ABC90,又四边形ABCD是平行四边形,四边形ABCD是矩形;故选项A不符合题意;B、C选项,同A选项一样,均为邻边垂直,ABCD是矩形;故选项B、C不符合题意;D、四边形ABCD是平行四边形,又ACBD,四边形ABCD是菱形;故选项D符合题意故选D【点睛】本题考查了菱形的判定,掌握菱形的判定定理是解题的关键10、C【解析】【分析】先根据矩形的性质、三角形中位线定理可得,再根据平行四边形的判定可得四边形为平行四边形,然后根据旋转的性质可得,从而可得,最后根据正方形的判定可得四边形为正方形,由此即可得【详解】解
14、:四边形为矩形,分别为的中点,四边形为平行四边形,又绕点顺时针旋转,平行四边形为正方形,四边形的面积是,故选:C【点睛】本题考查了矩形的性质、正方形的判定与性质、三角形中位线定理等知识点,熟练掌握正方形的判定与性质是解题关键二、填空题1、5【解析】【分析】由旋转性质可证明EDFMDF,从而EF=FM;设FM=EF=x,则可得BF=8x,由勾股定理建立方程即可求得x【详解】由旋转的性质可得:DE=DM,CM=AE=2,ADE=CDM,EDM=90四边形ABCD是正方形ADC=B=90,AB=BC=6ADE+FDC=ADCEDF=45FDC+CDM=45即MDF=45EDF=MDF在EDF和MDF
15、中EDFMDF(SAS)EF=FM设EF=FM=x则在RtEBF中,由勾股定理得:解得:故答案为:5【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理等知识,运用了方程思想,关键是证明三角形全等2、10【解析】【分析】根据正方形的性质,结合题意易求证,即可利用“ASA”证明,得出最后根据勾股定理可求出,即正方形的面积为10【详解】四边形ABCD是正方形,根据题意可知:,在和中,在中,正方形ABCD的面积是10故答案为:10【点睛】本题考查正方形的性质,全等三角形的判定和性质以及勾股定理利用数形结合的思想是解答本题的关键3、(9,4)、(-3,4)、(3,-4)【解析】【分析】根据
16、平行四边形的性质得出AD=BO=6,ADBO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标【详解】平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),AD=BO=6,ADBO,D的横坐标是3+6=9,纵坐标是4,即D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4)故答案为:(9,4)、(-3,4)、(3,-4)【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等4、5【解析】【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可【详解】解:在直角三角形中,
17、两直角边长分别为6和8,则斜边长10,斜边中线长为105,故答案为 5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键5、10【解析】【分析】利用矩形性质,求证,将阴影部分的面积转为的面积,最后利用中线平分三角形的面积,求出的面积,即可得到阴影部分的面积【详解】解:四边形为矩形, , 在与中, 阴影部分的面积最后转化为了的面积,中, 平分, 阴影部分的面积:,故答案为:10【点睛】本题主要是考查了矩形的性质以全等三角形的判定与性质以及中线平分三角形面积,熟练利用矩形性质,证明三角形全等,将阴影部分面积转化为其他图形的面积,这是解决本题的关键三
18、、解答题1、(1)见解析;(2)12,0;-8,0;0,16;(3)当M的坐标为(2,0)或(4,0)时,OMN的一条边与BC平行;当M的坐标为(0,10)或(12,0)或(,0)时,MOE是等腰三角形【分析】(1)设,则,由勾股定理求出,即可得出结论;(2)由的面积求出m的值,从而得到、的长,即可得到A、B、C的坐标;(3)分当时,;当时,;得出方程,解方程即可;由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可【详解】解:(1)证明:设,则,在中,是等腰三角形;(2),A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16
19、),故答案为:12,0;-8,0;0,16;(3)如图3-1所示,当MNBC时,AB=AC,ABC=ACB,MNBC,AMN=ABC,ANM=ACB,AMN=ANM,AM=AN,AM=BM,M为AB的中点,点M的坐标为(2,0);如图3-2所示,当ONBC时,同理可得,M点的坐标为(4,0);综上所述,当M的坐标为(2,0)或(4,0)时,OMN的一条边与BC平行;如图3-3所示,当OM=OE时,E是AC的中点,AOC=90,此时M的坐标为(0,10);如图3-4所示,当时,此时M点与A点重合,M点的坐标为(12,0);如图3-5所示,当OM=ME时,过点E作EFx轴于F,OE=AE,EFOA
20、,设,则,解得,M点的坐标为(,0);综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,MOE是等腰三角形【点睛】本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解2、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明与都是,最后加上,即可证明结论【详解】(1)答案如下图所示:分别以A、B两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心
21、,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点M,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点T,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F(2)证明:点是AB与其垂直平分线l的交点,点是AB的中点,是RtABC上的斜边的中线,DE、DF分别是ADC,BDC的角平分线, , , , , 在四边形CEDF中, 四边形CEDF是矩形【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键3、(1)证
22、明见解析;(2)【分析】(1)先证明再证明从而可得结论;(2)证明是等边三角形,再分别求解 从而可得答案.【详解】证明(1) 平行四边形ABCD中, 点E、F分别是BC、AD的中点, (2) , 是等边三角形, 四边形是平行四边形, 而 ,所以等于的2倍的角有:【点睛】本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,平行四边形的性质,证明“是等边三角形”是解(2)的关键.4、(1)是;(2)见解析;(3)至少需要3条对角线相等才能判定它是正五边形,见解析【分析】(1)根据对角线相等的菱形是正方形,证明即可;(2)由SSS证明ABCBCDCDEDEAEAB得出ABC=BCD=CDE=
23、DEA=EAB,即可得出结论;(3)由SSS证明ABEBCADEC得出BAE=CBA=EDC,AEB=ABE=BAC=BCA=DCE=DEC,由SSS证明ACEBEC得出ACE=CEB,CEA=CAE=EBC=ECB,由四边形ABCE内角和为360得出ABC+ECB=180,证出ABCE,由平行线的性质得出ABE=BEC,BAC=ACE,证出BAE=3ABE,同理:CBA=D=AED=BCD=3ABE=BAE,即可得出结论;【详解】(1)解:结论:四边形ABCD是正四边形理由:ABBCCDDA,四边形ABCD是菱形,ACBD,四边形ABCD是正方形四边形ABCD是正四边形故答案为:是(2)证明
24、:凸五边形ABCDE的各条边都相等,ABBCCDDEEA,在ABC、BCD、CDE、DEA、EAB中,ABCBCDCDEDEAEAB(SSS),ABCBCDCDEDEAEAB,五边形ABCDE是正五边形;(3)解:结论:至少需要3条对角线相等才能判定它是正五边形若ACBECE,五边形ABCDE是正五边形,理由如下:在ABE、BCA和DEC中,ABEBCADEC(SSS),BAECBAEDC,AEBABEBACBCADCEDEC,在ACE和BEC中,ACEBEC(SSS),ACECEB,CEACAEEBCECB,四边形ABCE内角和为360,ABC+ECB180,ABCE,ABEBEC,BACA
25、CE,CAECEA2ABE,BAE3ABE,同理:CBADAEDBCD3ABEBAE,五边形ABCDE是正五边形;【点睛】本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键5、(1)见解析;(2)30【分析】(1)根据折叠的性质以及矩形的性质可得结果;(2)设DE=x,则BE=x,AE=18x,在RtABE中,由勾股定理列方程求解【详解】解:(1)BDE是等腰三角形由折叠可知,CBD=EBD,ADBC,CBD=EDB,EBD=EDB,BE=DE,即BDE是等腰三角形;(2)设DE=x,则BE=x,AE=18x,在RtABE中,由勾股定理得:AB2+AE2=BE2即62+(18x)2=x2,解得:x=10,所以SBDE=DEAB=106=30【点睛】本题考查了等腰三角形的判定,矩形与折叠的性质,勾股定理等知识点,熟练掌握相关的性质以及定理是解本题的关键