《精品解析2022年最新人教版八年级数学下册第十八章-平行四边形专项测评试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《精品解析2022年最新人教版八年级数学下册第十八章-平行四边形专项测评试卷(无超纲带解析).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十八章-平行四边形专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AEBC,垂足为点E,则AE的长是( )A5B2C
2、D2、在RtABC中,C90,若D为斜边AB上的中点,AB的长为10,则DC的长为( )A5B4C3D23、菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF若EF,BD2,则菱形ABCD的面积为( )A2BC6D84、如图,已知是平分线上的一点,是的中点,如果是上一个动点,则的最小值为( )ABCD5、如图,把一张长方形纸片ABCD沿AF折叠,使B点落在处,若,要使,则的度数应为( )A20B55C45D606、如图,正方形ABCO和正方形DEFO的顶点A、E、O在同一直线上,且EF=,AB=3,给出下列结论:COD=45;AE=3+;CF=AD=;SCOF
3、+SEOF=期中正确的个数为( )A1个B2个C3个D4个7、在中,AC与BD相交于点O,要使四边形ABCD是菱形,还需添加一个条件,这个条件可以是( )AAO=COBAO=BOCAOBODABBC8、如图所示,在 ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AD于点E,BC于点F, ,则 ABCD的面积为( ) A24B32C40D489、下列说法正确的是()A平行四边形的对角线互相平分且相等B矩形的对角线相等且互相平分C菱形的对角线互相垂直且相等D正方形的对角线是正方形的对称轴10、如图,矩形ABCD中,DEAC于E,若ADE2EDC,则BDE的度数为( )A36B30C
4、27D18第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知在矩形中,将沿对角线AC翻折,点B落在点E处,连接,则的长为_2、如图,在中,点、分别是三边的中点,且,则的长度是_3、如图,矩形ABCD中,AB9,AD12,点M在对角线BD上,点N为射线BC上一动点,连接MN,DN,且DNMDBC,当DMN是等腰三角形时,线段BN的长为_4、如图,在四边形中,分别是的中点,分别以为直径作半圆,这两个半圆面积的和为,则的长为_5、正方形的一条对角线长为4,则这个正方形面积是_三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD是菱形,DEAB、DFB
5、C,垂足分别为E、F求证:BEBF2、如图,ABC中,ACB90,AB5cm,BC4cm,过点A作射线lBC,若点P从点A出发,以每秒2cm的速度沿射线l运动,设运动时间为t秒(t0),作PCB的平分线交射线l于点D,记点D关于射线CP的对称点是点E,连接AE、PE、BP(1)求证:PCPD;(2)当PBC是等腰三角形时,求t的值;(3)是否存在点P,使得PAE是直角三角形,如果存在,请直接写出t的值,如果不存在,请说明理由3、如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点求证:(1)DAGDCG;(2)GCCH4、在RtABC中,ACB90,AC
6、BC,点D为AB边上一点,过点D作DEAB,交BC于点E,连接AE,取AE的中点P,连接DP,CP(1)观察猜想: 如图(1),DP与CP之间的数量关系是 ,DP与CP之间的位置关系是 (2)类比探究: 将图(1)中的BDE绕点B逆时针旋转45,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明;若不成立,请说明理由(3)问题解决: 若BC3BD3, 将图(1)中的BDE绕点B在平面内自由旋转,当BEAB时,请直接写出线段CP的长5、如图,在中,D是边上的一点,过D作交于点E,连接交于点F(1)求证:是的垂直平分线;(2)若点D为的中点,且,求的长-参考答案-一、单选题1、D【解析
7、】【分析】根据菱形的性质得出BO、CO的长,在RtBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的长度【详解】解:四边形ABCD是菱形,CO=AC=3,BO=BD=4,AOBO,BC= =5,S菱形ABCD=,S菱形ABCD=BCAE,BCAE=24,AE=,故选:D【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分2、A【解析】【分析】利用直角三角形斜边的中线的性质可得答案【详解】解:C=90,若D为斜边AB上的中点,CD=AB,AB的长为10,DC=5,故选:A【点睛】此题主要考查了直角三角形斜
8、边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半3、A【解析】【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案【详解】解:E,F分别是AD,CD边上的中点,EF=,AC=2EF=2,又BD=2,菱形ABCD的面积S=ACBD=22=2,故选:A【点睛】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键4、C【解析】【分析】根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值【详解】解:点P是AOB平分线上的一点,
9、PDOA,M是OP的中点,点C是OB上一个动点当时,PC的值最小,OP平分AOB,PDOA,最小值,故选C【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键5、B【解析】【分析】设直线AF与BD的交点为G,由题意易得,则有,由折叠的性质可知,由平行线的性质可得,然后可得,进而问题可求解【详解】解:设直线AF与BD的交点为G,如图所示:四边形ABCD是矩形,由折叠的性质可知,;故选B【点睛】本题主要考查折叠的性质及矩形的性质,熟练掌握折叠的性质及矩形的性质是解题的关键6、B【解析】【分析】根据CO
10、D180AOCDOE得到COD=45,根据已知条件求出OE2,得到AEAO+OE2+35,作DHAB于H,作FGCO交CO的延长线于G,根据勾股定理即可得到BD,根据三角形面积的关系计算即可;【详解】AOC90,DOE45,COD180AOCDOE45,故正确;EF,OE2,AOAB3,AEAO+OE2+35,故错误;作DHAB于H,作FGCO交CO的延长线于G,则FG1,CF,BH312,DH3+14,BD,故错误;COF的面积SCOF31,EOF的面积SEOF= ()2=1SCOF+SEOF=故正确;正确的是;故选:B【点睛】本题主要考查了正方形的性质,勾股定理,准确计算是解题的关键7、C
11、【解析】【分析】根据菱形的判定分析即可;【详解】四边形ABCD时平行四边形,AOBO,是菱形;故选C【点睛】本题主要考查了菱形的判定,准确分析判断是解题的关键8、B【解析】【分析】先根据平行四边形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质可得,从而可得,然后根据平行四边形的性质即可得【详解】解:四边形是平行四边形,在和中,则的面积为,故选:B【点睛】本题考查了平行四边形的性质、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质是解题关键9、B【解析】【分析】根据平行四边形、矩形、菱形、正方形的性质定理判断即可【详解】解:平行四边形的对角线互相平分,不一定相等,A
12、错误;矩形的对角线相等且互相平分,B正确;菱形的对角线互相垂直,不一定相等,C错误;正方形的对角线所在的直线是正方形的对称轴,D错误;故选:B【点睛】本题考查了命题的真假判断,掌握平行四边形、矩形、菱形、正方形的性质是解题的关键10、B【解析】【分析】根据已知条件可得以及的度数,然后求出各角的度数便可求出【详解】解:在矩形ABCD中,故选:B【点睛】题目主要考查矩形的性质,三角形内角和及等腰三角形的性质,理解题意,综合运用各个性质是解题关键二、填空题1、【解析】【分析】过点E作EFAD于点F,先证明CG=AG,再利用勾股定理列方程,求出AG的值,结合三角形的面积法和勾股定理,即可求解【详解】解
13、:如图所示:过点E作EFAD于点F,有折叠的性质可知:ACB=ACE,ADBC,ACB=CAD,CAD=ACE,CG=AG,设CG=x,则DG=8-x,在中,x=5,AG=5,在中,EG=,EFAD,AEG=90,在中,、DF=8-=,在中,故答案是:【点睛】本题主要考查矩形的性质,折叠的性质,勾股定理,等腰三角形的判定定理,添加辅助线构造直角三角形,是解题的关键2、【解析】【分析】根据中位线定理可得的长度,再根据直角三角形斜边上的中线等于斜边的一半即可求出的长度【详解】解:点、分别是三边的中点,且故答案为:【点睛】本题主要考查了三角形的中位线定理和直角三角形斜边上的中线,熟练掌握三角形的中位
14、线定理和直角三角形斜边上的中线是解答本题的关键3、15或24或【解析】【分析】分三种情形讨论求解即可【详解】解:如图1中, 当NM=ND时,NDM=NMD,MND=CBD,BDN=BND,BD=BN=15;如图2中,当DM=DN时,此时M与B重合,BC=CN=12,BN=24;如图3中,当MN=MD时,NDM=MND,MND=CBD,NDM=MND=CBD,BN=DN,设BN=DN=x,在RtDNC中,DN2=CN2+CD2,x2=(12-x)2+92,x=,综上,当DMN是等腰三角形时,线段BN的长为15或24或故答案为:15或24或【点睛】本题考查了矩形的性质、等腰三角形的判定和性质、勾股
15、定理等知识,解题的关键是学会用分类讨论的思想思考问题,注意不能漏解4、4【解析】【分析】根据题意连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=AB,FM=CD,EMAB,FMCD,推出ABC=ENC,MFN=C,求出EMF=90,根据勾股定理求出ME2+FM2=EF2,根据圆的面积公式求出阴影部分的面积即可【详解】解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,ABC+DCB=90,E、F、M分别是AD、BC、BD的中点,EM=AB,FM=CD,EMAB,FMCD,ABC=ENC,MFN=C,MNF+MFN=90,NMF=180-9
16、0=90,EMF=90,由勾股定理得:ME2+FM2=EF2,阴影部分的面积是:(ME2+FM2)=EF2=8,EF=4.故答案为:4【点睛】本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并求出ME2+FM2的值是解答此题的关键5、8【解析】【分析】正方形边长相等设为,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积【详解】解:设边长为,对角线为故答案为:【点睛】本题考察了正方形的性质以及勾股定理解题的关键在于求解正方形的边长三、解答题1、见解析【分析】根据菱形的性质,可得
17、ADDC,ABBC,AC从而得到AEDCFD从而得到AECF即可求证【详解】证明:四边形ABCD是菱形, ADDC,ABBC,ACDEAB,DFBC,AEDCFD90AEDCFD(AAS)AECFABAEBCCF即:BEBF【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的对角相等,对边相等是解题的关键2、(1)见解析;(2)t1或或;(3)存在,PAE是直角三角形时t或【分析】(1)根据平行线的性质可得PDCBCD,根据角平分线的定义可得PCDBCD,则PCDPDC,即可得到PCPD;(2)分当BPBC4cm时,当PCBC4cm时,当PCPB时三种情况讨论求解即可;(3
18、)分当PAE90时,当APE90时,当AEP90时,三种情况讨论求解即可【详解】解:(1)lBC,PDCBCD,CD平分BCP,PCDBCD,PCDPDC,PCPD;(2)在ABC中,ACB90,若PBC是等腰三角形,存在以下三种情况:当BPBC4cm时,作PHBC于H,ACB90,lBC,ACH=CAP=90,四边形ACHP是矩形,PHAC3cm,由勾股定理 ,即,解得,当PCBC4cm时,由勾股定理,即,解得;当PCPB时,P在BC的垂直平分线上,CHBC2cm,同理可得APCH2cm,即2t2,解得t1,综上所述,当t1或或时,PBC是等腰三角形;(3)D关于射线CP的对称点是点E,PD
19、PE,ECP=DCP,由(1)知,PDPC,PCPE,要使PAE是直角三角形,则存在以下三种情况:当PAE90时,此时点C、A、E在一条直线上,且AEAC3cm,CD平分BCP,ECP=DCP=BCD,ACPACB30,即,即2t,解得;当APE90时,EPD=90D、E关于直线CP对称,EPF=DPF=45,APC=DPF=45,lBC,CAP=180-ACB=90,ACP=45,AP=AC=3cm,; 当AEP90时,在RtACP中,PCAP,在RtAEP中,APPE,PCPEPD,故此情况不存在,综上,PAE是直角三角形时或【点睛】本题主要考查了轴对称的性质,角平分线的定义,平行线的性质
20、,等腰三角形的性质,勾股定理,矩形的性质与判定,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够利用分类讨论的思想求解3、(1)见解析;(2)见解析【分析】(1)要证明,需把两角放到两三角形中,证明两三角形与全等得到,全等的方法是:由为正方形,得到与相等,与相等,再加上公共边,利用“”得到全等,利用全等三角形的对应角相等得证;(2)要证明与垂直,需证,即,方法是:由正方形的对边与平行,根据两直线平行,内错角相等得到与相等,由(1)得到的与相等,等量代换得到与相等,再由为直角三角形斜边上的中线,得到与相等都等于斜边的一半,根据“等边对等角”得到与相等,又等于,等量代换得到,即,得证
21、【详解】证明:(1)为正方形,又,;(2)为正方形,又,为直角三角形斜边边的中点,又,即,【点睛】本题考查了正方形的性质,全等三角形的判定与性质,以及直角三角形的性质,以及直角三角形斜边上的中线等于斜边的一半,是一道证明题解题的关键是要求学生熟练掌握正方形的性质:四条边都相等,四个角相等都为直角,对角线互相垂直且平分,一条对角线平分一组对角4、(1)PDPC,PDPC;(2)成立,见解析;(3)2或4【分析】(1)根据直角三角形斜边中线的性质,可得,根据角之间的关系即可,即可求解;(2)过点P作PTAB交BC的延长线于T,交AC于点O,根据全等三角形的判定与性质求解即可;(3)分两种情况,当点
22、E在BC的上方时和当点E在BC的下方时,过点P作PQBC于Q,利用等腰直角三角形的性质求得,即可求解【详解】解:(1)ACB90,ACBC,点P为AE的中点,故答案为:,(2)结论成立理由如下:过点P作PTAB交BC的延长线于T,交AC于点O则,由勾股定理可得:点P为AE的中点,在中,(3)如图31中,当点E在BC的上方时,过点P作PQBC于Q则,由(2)可得,为等腰直角三角形由勾股定理得,如图32中,当点E在BC的下方时,同法可得PCPD2综上所述,PC的长为4或2【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理,解题的关键是熟练掌握相关基本性质,做辅助线,构造出全等
23、三角形5、(1)见解析;(2)6【分析】(1)由BC=BD,可得BCD=BDC,再由及,可得ECD=EDC,则有EC=ED,从而可得点B、E在线段CD的垂直平分线上,从而可得结论;(2)由D点是AB的中点及BC=BD,可得BDC是等边三角形,从而由30度的直角三角形的性质可分别求得EC、BE,由AE=BE,即可求得AC的长【详解】(1)BC=BDBCD=BDC,点B在线段CD的垂直平分线上,BCD+ECD=EDC+BDCECD=EDCEC=ED点E在线段CD的垂直平分线上BE是线段CD的垂直平分线(2)D点是AB的中点,ACB=90CD是RtABC斜边上的中线CD=BDCD=BC=BDBDC是等边三角形BCD=DBC=60ECF=9060=30由(1)知,BFCDEC=2EF=2,BE=2EC=4DEAB,点D为AB的中点AE=BE=4AC=AE+EC=4+2=6【点睛】本题考查了线段垂直平分线的性质定理和判定定理,直角三角形斜边上的中线的性质,30度角的直角三角形的性质,等边三角形的判定与性质;题目虽不难,但涉及的知识点比较多,灵活运用这些知识是解题的关键