2022年最新人教版八年级数学下册第十八章-平行四边形专题攻克试卷(无超纲).docx

上传人:可****阿 文档编号:30733352 上传时间:2022-08-06 格式:DOCX 页数:30 大小:679.81KB
返回 下载 相关 举报
2022年最新人教版八年级数学下册第十八章-平行四边形专题攻克试卷(无超纲).docx_第1页
第1页 / 共30页
2022年最新人教版八年级数学下册第十八章-平行四边形专题攻克试卷(无超纲).docx_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《2022年最新人教版八年级数学下册第十八章-平行四边形专题攻克试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版八年级数学下册第十八章-平行四边形专题攻克试卷(无超纲).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版八年级数学下册第十八章-平行四边形专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,菱形OABC在平面直角坐标系中的位置如图所示,AOC45,OA,则点C的坐标为()A(,1)B(1,1

2、)C(1,)D(+1,1)2、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD12,则DOE的周长是( )A12B15C18D243、如图,在ABC中,ABC90,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D404、在锐角ABC中,BAC60,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:NPMP;AN:ABAM:AC;BN2AN;当ABC60时,MNBC,一定正确的有( )ABCD5、如图,矩形ABCD中,AB3,AD4,

3、将矩形ABCD折叠后,A点的对应点落在CD边上,EF为折痕,A和EF交于G点,当AG+BG取最小值时,此时EF的值为()AB3C2D56、如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AEBC,垂足为点E,则AE的长是( )A5B2CD7、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C已知,点B到原点的最大距离为( )A22B18C14D108、下列命题正确的是( )A对角线相等的四边形是平行四边形B对角线相等的四边形是矩形C对角线互相垂直的平行四边形是菱形D对角线互相垂直且相等的四边形是正方形9、如图,在菱形ABCD中,AB5,AC8,过点

4、B作BECD于点E,则BE的长为( )ABC6D10、如图,矩形ABCD的面积为1cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B,;依此类推,则平行四边形AO2014C2015B的面积为( )cmABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,正方形ABCD的面积为6,CDE是等边三角形,点E在正方形ABCD内,在对角线BD上有一动点K,则KA+KE的最小值为 _2、正方形ABCD的边长为4,则图中阴影部分的面积为 _3、在平行四边形ABCD中,BF平分ABC,交AD于点

5、F,CE平分BCD,交AD于点E,AB=6,EF=2,则BC的长为_4、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB8,AD16,BE4,则MC的长为_5、如图,ABC中,D、E分别是AB、AC的中点,若DE4cm,则BC_cm三、解答题(5小题,每小题10分,共计50分)1、如图,ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DEBF求证:AECF2、如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点求证:(1)DAGDCG;(2)GCCH3、如图,四

6、边形ABCD是正方形,BEBF,BEBF,EF与BC交于点G(1)求证:AECF;(2)若ABE62,求GFC+BCF的值4、如图,AOB是等腰直角三角形(1)若A(4,1),求点B的坐标;(2)ANy轴,垂足为N,BMy轴,垂足为点M,点P是AB的中点,连PM,求PMO度数;(3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQAM5、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为_-参考答案-一、单选题1、B【解析】【

7、分析】作CDx轴,根据菱形的性质得到OC=OA=,在RtOCD中,根据勾股定理求出OD的值,即可得到C点的坐标【详解】:作CDx轴于点D,则CDO=90,四边形OABC是菱形,OA=,OC=OA=,又AOC=45,OCD=90-AOC=90-45=45,DOC=OCD,CD=OD,在RtOCD中,OC=,CD2+OD2=OC2,2OD2=OC2=2,OD2=1,OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键2、B【解析】【分析】根据平行四边形的对边

8、相等和对角线互相平分可得,OBOD,又因为E点是CD的中点,可得OE是BCD的中位线,可得OEBC,所以易求DOE的周长【详解】解:ABCD的周长为36,2(BCCD)36,则BCCD18四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD12,ODOBBD6又点E是CD的中点,OE是BCD的中位线,DECD,OEBC,DOE的周长ODOEDEBD(BCCD)6915,故选:B【点睛】本题考查了三角形中位线定理、平行四边形的性质解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质3、C【解析】【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可

9、得DE/BC,DE=BC,根据平行线的性质可得ADE=ABC=90,利用ASA可证明MBDEDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案【详解】D,E分别是AB,AC的中点,AE=CE,AD=BD,DE为ABC的中位线,DE/BC,DE=BC,ABC90,ADE=ABC=90,在MBD和EDA中,MBDEDA,MD=AE,DE=MB,DE/MB,四边形DMBE是平行四边形,MD=BE,AC18,BC14,四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32故选:C【点睛】

10、本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键4、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定正确;利用含30度角的直角三角形的性质即可判定正确,由勾股定理即可判定错误;由等边三角形的判定及性质、三角形中位线定理即可判定正确【详解】CM、BN分别是高CMB、BNC均是直角三角形点P是BC的中点PM、PN分别是两个直角三角形斜边BC上的中线故正确BAC=60ABN=ACM=90BAC=30AB=2AN,AC=2AMAN:AB=AM:

11、AC=1:2即正确在RtABN中,由勾股定理得:故错误当ABC=60时,ABC是等边三角形CMAB,BNACM、N分别是AB、AC的中点MN是ABC的中位线MNBC故正确即正确的结论有故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键5、A【解析】【分析】过点作于,由翻折的性质知点为的中点,则为的中位线,可知在上运动,当取最小值时,此时与重合,利用勾股定理和相似求出的长即可解决问题【详解】解:过点作于,将矩形折叠后,点的对应点落在边上,点为的中点,为的中位线,在上运动,

12、在上运动,当取最小值时,此时与重合,在和中,故选:A【点睛】本题主要考查了矩形的性质,翻折的性质,全等三角形的判定与性质,勾股定理等知识,解题的关键是证明在上运动6、D【解析】【分析】根据菱形的性质得出BO、CO的长,在RtBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的长度【详解】解:四边形ABCD是菱形,CO=AC=3,BO=BD=4,AOBO,BC= =5,S菱形ABCD=,S菱形ABCD=BCAE,BCAE=24,AE=,故选:D【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分7、B【解析

13、】【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离【详解】解:取AC的中点E,连接BE,OE,OB,AOC90,AC16,OECEAC8,BCAC,BC6,BE10,若点O,E,B不在一条直线上,则OBOE+BE18若点O,E,B在一条直线上,则OBOE+BE18,当O,E,B三点在一条直线上时,OB取得最大值,最大值为18故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用8、C【解析】【分析】根据平行四边形、矩形、菱形以及正方形的判定方法,

14、对选项逐个判断即可【详解】解:A、对角线互相平分的四边形是平行四边形,选项错误,不符合题意;B、对角线相等平行四边形是矩形,选项错误,不符合题意;C、对角线互相垂直的平行四边形是菱形,选项正确,符合题意;D、对角线互相垂直且相等的平行四边形是正方形,选项错误,不符合题意;故选C【点睛】此题考查了平行四边形、矩形、菱形以及正方形的判定,掌握它们的判定方法是解题的关键9、B【解析】【分析】根据菱形的性质求得的长,进而根据菱形的面积等于,即可求得的长【详解】解:如图,设的交点为,四边形是菱形,在中,菱形的面积等于故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得的长是解题的关键10、C【解析】

15、【分析】根据“同底等高”的原则可知平行四边形AOC1B底边AB上的高等于BC的,则有平行四边形AOC1B的面积,平行四边形AOC2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,则有平行四边形ABC3O2的面积,;由此规律可进行求解【详解】解:O1为矩形ABCD的对角线的交点,平行四边形AOC1B底边AB上的高等于BC的,平行四边形AOC1B的面积=1=,平行四边形AO1C2B的对角线交于点O2,平行四边形AOC2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,平行四边形ABC3O2的面积=1=,依此类推,平行四边形ABC2014O2015的面积=cm2故答案为:C【点睛】

16、本题主要考查矩形的性质与平行四边形的性质,熟练掌握矩形的性质与平行四边形的性质是解题的关键二、填空题1、【解析】【分析】根据正方形的性质可知C、A关于BD对称,推出CKAK,推出EK+AKCE,根据等边三角形性质推出CECD,根据正方形面积公式求出CD即可【详解】解:四边形ABCD是正方形,C、A关于BD对称,即C关于BD的对称点是A,如图,连接CK,则CKAK,EK+CKCE,CDE是等边三角形,CECD,正方形ABCD的面积为6,CD,KA+KE的最小值为,故答案为:【点睛】本题考查了正方形的性质,轴对称-最短路径问题,等边三角形的性质等知识点的应用,解此题的关键是确定K的位置和求出KA+

17、KE的最小值是CE2、8【解析】【分析】根据正方形的轴对称的性质可得阴影部分的面积等于正方形的面积的一半,然后列式进行计算即可得解【详解】解:448故答案为:8【点睛】本题考查正方形的性质,轴对称的性质,将阴影面积转化为三角形面积是解题的关键,学会于转化的思想思考问题3、10或14#14或10【解析】【分析】利用BF平分ABC, CE平分BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可【详解】解: 四边形ABCD是平行四边形,BF平分ABC, CE平分BCD, , 由等角对等边可知:, 情况1:当与相交时,如下图所示:, ,情况2:当与不相交

18、时,如下图所示:,故答案为:10或14【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况4、10【解析】【分析】过E作EFAD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出ANMENM,可得AM=EM,根据矩形ABCD,得出B=A=D=90,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可【详解】解:过E作EFAD于F,矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,

19、ANMENM,AM=EM,矩形ABCD,B=A=D=90, FEAD,AFE=B=A=90,四边形ABEF为矩形,AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4在RtFEM中,根据勾股定理,即,解得m=10,MD=AD-AM=16-10=6,在RtMDC中,MC=故答案为10【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键5、8【解析】【分析】运用三角形的中位线的知识解答即可【详解】解:ABC中,D、E分别是AB、AC的中点DE是ABC的中位线,BC=2DE=8cm故答案是8【点睛】本题主要考查了三角形的中位线,掌

20、握三角形的中位线等于底边的一半成为解答本题的关键三、解答题1、见解析【分析】首先根据平行四边形的性质推出ADCB,ADBC,得到ADECBF,从而证明ADECBF,得到AEDCFB,即可证明结论【详解】证:四边形ABCD是平行四边形,ADCB,ADBC,ADECBF,在ADE和CBF中,ADECBF(SAS),AEDCFB,AECF【点睛】本题考查平行四边形的性质,以及全等三角形的判定与性质等,掌握平行四边形的基本性质,准确证明全等三角形并利用其性质是解题关键2、(1)见解析;(2)见解析【分析】(1)要证明,需把两角放到两三角形中,证明两三角形与全等得到,全等的方法是:由为正方形,得到与相等

21、,与相等,再加上公共边,利用“”得到全等,利用全等三角形的对应角相等得证;(2)要证明与垂直,需证,即,方法是:由正方形的对边与平行,根据两直线平行,内错角相等得到与相等,由(1)得到的与相等,等量代换得到与相等,再由为直角三角形斜边上的中线,得到与相等都等于斜边的一半,根据“等边对等角”得到与相等,又等于,等量代换得到,即,得证【详解】证明:(1)为正方形,又,;(2)为正方形,又,为直角三角形斜边边的中点,又,即,【点睛】本题考查了正方形的性质,全等三角形的判定与性质,以及直角三角形的性质,以及直角三角形斜边上的中线等于斜边的一半,是一道证明题解题的关键是要求学生熟练掌握正方形的性质:四条

22、边都相等,四个角相等都为直角,对角线互相垂直且平分,一条对角线平分一组对角3、(1)证明见解析;(2)73【分析】(1)根据正方形的性质及各角之间的关系可得:,由全等三角形的判定定理可得,再根据其性质即可得证;(2)根据垂直及等腰三角形的性质可得,再由三角形的外角的性质可得,由此计算即可【详解】(1)证明:四边形ABCD是正方形,在和中,;(2)解:BEBF,又,四边形ABCD是正方形,的值为【点睛】题目主要考查全等三角形的判定和性质,正方形的性质,三角形的外角性质,理解题意,熟练运用各个定理性质是解题关键4、(1)(1,4);(2)45;(3)见解析【分析】(1)过点A作AEx轴于E,过点B

23、作BFx轴于F,证明OAEBOF得到OF=AE,BF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);(2)延长MP与AN交于H,证明APHBPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到NHM=NMH=45,即PMO=45;(3)连接OP,AM,取BM中点G,连接GP,则GP是ABM的中位线,AMGP,证明PQOPGB得到OPQ=BPG,再由OPQ+BPQ=90,得到BPG+BPQ=90,即GP

24、Q=90,则PQPG,即PGAM;【详解】解:(1)如图所示,过点A作AEx轴于E,过点B作BFx轴于F,AEO=OFB=90,AOE+OAE=90,又AOB=90,AOE+BOF=90,OAE=BOF,AO=OB,OAEBOF(AAS),OF=AE,BF=OE,点A的坐标为(-4,1),OF=AE=1,BF=OE=4,点B的坐标为(1,4);(2)如图所示,延长MP与AN交于H,AHy轴,BMy轴,BMAN,MBP=HAP,AHP=BMP,点P是AB的中点,AP=BP,APHBPM(AAS),AH=BM,A点坐标为(-4,1),B点坐标为(1,4),AN=4,OM=4,BM=1,ON=1,H

25、N=AN-AH=AN-BM=3,MN=OM-ON=3,HN=MN,NHM=NMH=45,即PMO=45;(3)如图所示,连接OP,AM,取BM中点G,连接GP,GP是ABM的中位线,AMGP,Q是ON的中点,G是BM的中点,ON=BM=1,P是AB中点,AOB是等腰直角三角形,AOB=90,OAB=OBA=45,OPB=90PAO=POA=45,POB=45,NAO+NOA=90,NOA+BON=90,NAO=BON,OAB=POB=45,BAN+NAO=POQ+BON,即BAN=POQ,由(2)得GBP=BAN,GBP=QOP,PQOPGB(SAS),OPQ=BPG,OPQ+BPQ=90,B

26、PG+BPQ=90,即GPQ=90,PQPG,PGAM;【点睛】本题主要考查了坐标与图形,全等三角形的性质与判定,三角形中位线定理,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件5、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解【详解】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD,点 E、 F、G、H分别是OA、OB、OC、OD的中点,OE=OG,OF=OH,四边形EFGH是平行四边形;(2)点 E、 F、G、H分别是OA、OB、OC、OD的中点, ,的周长为2(AB+BC)=32, , ,由(1)知:四边形EFGH是平行四边形,四边形EFGH的周长为 【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁