《2022年强化训练北师大版八年级数学下册第一章三角形的证明综合测试试卷(精选).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版八年级数学下册第一章三角形的证明综合测试试卷(精选).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第一章三角形的证明综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知在 A B C中,C D是A B边上的高线,B E平分A B C,交C D于点E, B C10,
2、D E3,则 B C E的面积等于( ) A6B9C15D12、如图,ABC是等边三角形,点在边上,则的度数为( )A25B60C90D1003、如图所示,为线段上一动点(不与点,重合),在同侧分别作正和正,与交于点,与交于点,与交于点,连接以下四个结论:;是等边三角形其中正确的是( )ABCD4、如图,在ABC中,cm,的垂直平分线交于点,交于点,的垂直平分线交于点,交于点,则的长为( )A4cmB3cmC2cmD1cm5、如图,在ABC中,已知ABAC3,BC4,若D,E是边BC的两个“黄金分割”点,则ADE的面积为()A104B35CD2086、下列说法正确的是()A全等三角形是指形状相
3、同的两个三角形B全等三角形的周长和面积分别相等C所有的直角三角形都是全等三角形D所有的等边三角形都是全等三角形7、如图,在ABC中,AD是角平分线,且,若,则的度数是( )A45B50C52D588、如图,点E在线段AB上,则的度数为()A20B25C30D409、下列以a,b,c为边的三角形不是直角三角形的是( )Aa1,b1,c2Ba2,b3,c13Ca3,b5,c7Da6,b8,c1010、如图,在ABC中,AC的垂直平分线MN交BC于点N,且,则的度数是( ) A45B50C55D60第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,AD为BC边
4、上的中线,于点E,AD与CE交于点F,连接BF.若BF平分,则的面积为_2、如图,将宽为的纸条沿BC折叠,则折叠后重叠部分的面积为_(根号保留)3、如图,四边形中,连接,平分,E是直线上一点,则的长为_4、如图,在ABC中,的垂直平分线交于点,交于点,的周长为13cm,则ABC的周长_cm5、如图,在ABC中,为边上的垂直平分线,若点D在直线上,连接,则周长的最小值为_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,ABC中,ABC的平分线BD与ACB的平分线CE交于点I,连接AI并延长交BC于点F求证:AF平分BAC2、已知:在ABC中,AD平分BAC,AE=AC求证:ADCE
5、3、如图,ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动(1)在运动过程中DEF是什么形状的三角形,并说明理由;(2)若运动到某一时刻时,BE=4,DEC=150,求等边ABC的周长;4、如图,E为BC中点,DE平分(1)求证:平分;(2)求证:;(3)求证:5、如图所示,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足a+b+(a-4)2=0,C的坐标为(1,0),且AHBC于点H,AH交OB于点P(1)如图1,写出a、b的值,证明AOPBOC;(2)如图2,连接OH,求证:OHP45;(3
6、)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连接MD,过D作DNDM交x轴于N点,当M点在y轴正半轴上运动的过程中,求证:SBDMSADN4-参考答案-一、单选题1、C【分析】过E作EFBC于F,根据角平分线性质得出EFDE3,根据三角形面积公式求出即可【详解】解:过E作EFBC于F,CD是AB边上的高线,BE平分ABC,EFDE3,BC10,BCE的面积为BCEF15,故选:C【点睛】本题考查了三角形的面积和角平分线性质,能根据角平分线性质求出DEEF是解此题的关键,注意:角平分线上的点到角两边的距离相等2、D【分析】由等边三角形的性质及三角形外角定理即可求得结果【详解】是等边三
7、角形C=60ADB=DBC+C=40+60=100故选:D【点睛】本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键3、A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案【详解】解:和是正三角形,故正确,故正确;,故正确;,是等边三角形,故正确;故选:A【点睛】此题主要考查等边三角形的判定与性质、全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理4、C【分析】此类题要通过作辅助线来沟通各角之间的关系,首先求出BMA与CNA是等腰三角形,再证明MAN为等边三角形即可【详解】解:连接AM,AN,A
8、B的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,BMAM,CNAN,MABB,CANC,BAC120,ABAC,BC30,BAMCAN60,AMNANM60,AMN是等边三角形,AMANMN,BMMNNC,BC6cm,MN2cm故答案为2cm故选:C【点睛】本题考查的知识点为线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键5、A【分析】过点A作AFBC于点F,由题意易得,再根据点,是边的两个黄金分割点,可得,根据勾股定理可得,进而可得,然后根据三角形的面积计算公式进行求解【详解】解:过点A作AFBC于点F,如图所示:,在RtAFB中,点,是
9、边的两个黄金分割点,DF=EF,;故选:A【点睛】本题主要考查二次根式的运算、勾股定理及等腰三角形的性质与判定,熟练掌握二次根式的运算、勾股定理及等腰三角形的性质与判定是解题的关键6、B【分析】根据全等三角形的性质,等边三角形的性质判断即可【详解】解:A、全等三角形是指形状和大小相同的两个三角形,该选项错误;B、全等三角形的周长和面积分别相等,该选项正确;C、所有的直角三角形不一定都是全等三角形,该选项错误;D、所有的等边三角形不一定都是全等三角形,该选项错误;故选:B【点睛】本题考查的是全等三角形的性质,掌握全等形的概念,全等三角形的性质是解题的关键7、A【分析】根据角平分线性质求出DCA,
10、再根据等腰三角形的性质和三角形的内角和定理求解C和B即可【详解】解:AD是角平分线,DCA=30,AD=AC,C=(180DCA)2=75,B=180BACC=1806075=45,故选:A【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键8、C【分析】根据全等三角形的性质可证得BC=CE,ACB=DCE即ACD=BCE,根据等腰三角形的性质和三角形的内角和定理求解B=BEC和BCE即可【详解】解:,BC=CE,ACB=DCE,B=BEC,ACD=BCE,ACD=BCE=180275=30,故选:C【点睛】本题考查全等三角形的性质、等腰三
11、角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键9、C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可如果有这种关系,这个就是直角三角形【详解】解:、,该三角形是直角三角形,故此选项不符合题意;、,该三角形是直角三角形,故此选项不符合题意;、,该三角形不是直角三角形,故此选项符合题意;、,该三角形是直角三角形,故此选项不符合题意;故选:C【点睛】本题考查了勾股定理的逆定理,解题的关键是在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进
12、而作出判断10、B【分析】连接AN,根据线段垂直平分线的性质得到NANC,得到NACC,根据三角形内角和定理列式计算,得到答案【详解】解:连接AN,NM是AC的垂直平分线,NANC,NACC,ANB2C, AB+BNBC,NC+BNBC,ABNC,ABAN,BANB2C,由三角形内角和定理得,B+C+BAC180,即2C+C+105180,解得,C25,B50故选:B【点睛】本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键二、填空题1、4【分析】过F作FGBC于G,根据角平分线的性质求得FG=EF=2,再根据三角形一边上的中线
13、将三角形面积平分求解即可【详解】解:过F作FGBC于G,BF平分,FGBC,即EFAB,FG=EF=2,AD为ABC的BC边上的中线,FG为BFC的BC边上在中线,又BC=8,SCDF= SBFC= BCFG= 82=4,故答案为:4【点睛】本题考查角平分线的性质定理、三角形的中线性质、三角形的面积公式,熟练掌握角平分线的性质定理以及三角形一边上的中线将三角形面积平分是解答的关键2、【分析】利用折叠的性质可得出ABC是等腰三角形,有AC=AB;过点C作CGAB于点G,则得CG=2,且CGA为等腰直角三角形,从而可求得AC的值,则可求得面积【详解】如图,由折叠性质得:ECB=ACBDEABDCA
14、=CAB=45DCA+ACB+ECB=180CAB+ACB+ABC=180ABC=ACB=67.5AB=AC即ABC是等腰三角形过点C作CGAB于点G,则CG=2,且ACG=CAB=45CGA为等腰直角三角形AG=CG=2 由勾股定理得:重叠部分ABC的面积为故答案为:【点睛】本题考查了折叠的性质,等腰三角形的判定,勾股定理等知识,判定ABC是等腰三角形是本题的关键3、6或10【分析】先利用平行线的性质和等角对等边的性质得到AB=AD,再根据点E在D的左边和右边分别求解即可;【详解】平分,是等腰三角形,当点E在线段AD上时,当点E在线段AD延长线上时,;故答案是:6或10【点睛】本题主要考查了
15、平行线的性质,角平分线的定义,等角对等边,先证出AB=AD是解题的关键4、22【分析】根据“的垂直平分线交于,交于”可知DE是AC的垂直平分线,利用中垂线的性质可得DC=DA,由的周长为AB+BD+AD= 13cm,可知AB+BC=12,再求AC=AE+CE=4.5+4.5=9cm,从而可以得到ABC的周长【详解】解:DE是AC的垂直平分线,DA=DC,AE=CE=4.5cmAC=AE+CE=4.5+4.5=9cm,的周长为AB+BD+AD=AB+BD+DC=AB+BC=13cm,ABC的周长为:AB+BC+AC=13+9=22cm故答案为22【点睛】本题考查的是线段垂直平分线的性质,知道线段
16、垂直平分线上的点到线段两端的距离相等,将ABD的周长转化为AB+BC是解题的关键5、12【分析】由垂直平分线的性质得出BDCD,判断出AD+CD有最小值时即为AC的长时,周长的最小【详解】解:连接CD,如图,为边上的垂直平分线,BDCD,周长AB+BD+ADAB+CD+AD,当AD+CD有最小值时,周长的最小,当A、D、C在一条直线上时,AD+CD有最小值,此时AD+CD最小值为AC的长,周长的最小值为AB+AC的值,周长的最小值为5+712故答案为:12【点睛】本题考查了垂直平分线的性质和三角形的周长,正确理解垂直平分线上的点到两端点的距离相等是解题的关键三、解答题1、见解析【分析】过点I分
17、别向ABC的边BC、AC、AB作垂线,垂足分别为点G、H、K,然后由角平分线的性质得到IGIH,IGIK,然后得到IHIK,再证明IHAIKA即可得到AF平分BAC【详解】证明:如图所示,过点I分别作IGBC、IHAC、IKAB,垂足分别G、H、K,BD平分ABC,CE平分ACB,IGIH,IGIK,IHIK,在RtIHA和RtIKA中,RtIHARtIKA(HL),IAHIAK,AF平分BAC【点睛】本题主要考查了角平分线的性质定理,全等三角形的判定和性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键2、见解析【分析】先根据角平分线的定义得到BAD=BAC,再根据等腰三角形的性质和三
18、角形外角定理得到E=BAC,从而得到BAD=E,即可证明ADCE【详解】解:AD平分BAC,BAD=BAC,AE=AC,E=ACE,E+ACE=BAC,E=BAC,BAD=E,ADCE【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键3、(1)DEF是等边三角形,理由见解析(2)等边ABC的周长为【分析】(1)利用DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明DEF是等边三角形(2)利用题(1)的条件即DEC=150,得出是含角的直角三角形,求出,最后求解出等边ABC的长,最后即可求出等边ABC的周长【
19、详解】(1)解:DEF是等边三角形,证明:由点D、E、F的运动情况可知:,ABC是等边三角形,,,,,在与中, ,同理可证,进而有,故DEF是等边三角形(2)解:由(1)可知DEF是等边三角形,且, 在中, ,等边ABC的周长为【点睛】本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键4、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DE交AB延长线于F,由B=C=90,推出ABCD,则CDE=F,再由DE平分AD
20、C,即可推出ADF=F,得到AD=AF,即ADF是等腰三角形,然后证明CDEBFE得到DE=FE,即E是DF的中点,即可证明AE平分BAD;(2)由(1)即可用三线合一定理证明;(3)由CDEBFE,得到CD=BF,则AD=AF=AB+BF=AB+CD【详解】解:(1)如图所示,延长DE交AB延长线于F,B=C=90,ABCD,CDE=F,DE平分ADC,CDE=ADE,ADF=F,AD=AF,ADF是等腰三角形,E是BC的中点,CE=BE,CDEBFE(AAS),DE=FE,E是DF的中点,AE平分BAD;(2)由(1)得ADF是等腰三角形,AD=AF,E是DF的中点,AEDE;(3)CDE
21、BFE,CD=BF,AD=AF=AB+BF=AB+CD【点睛】本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键5、(1)a4,b4,见解析;(2)见解析;(3)见解析【分析】(1)先依据非负数的性质求得、的值从而可得到,然后再,最后,依据可证明;(2)要证,只需证明平分,过分别作于点,作于点,只需证到,只需证明即可;(3)连接,易证,从而有,由此可得【详解】(1)解:,则即,在与中,;(2)证明:过分别作于点,作于点在四边形中,在与中,平分,;(3)证明:如图:连接,为的中点,即,在与中,【点睛】本题是一次函数综合题,考查了全等三角形的判定与性质、等腰直角三角形的性质、角平分线的判定、二次根式及完全平方式的非负性等知识,在解决第(3)小题的过程中还用到了等积变换,而运用全等三角形的性质则是解决本题的关键