2022年强化训练北师大版八年级数学下册第一章三角形的证明定向练习试卷.docx

上传人:知****量 文档编号:28160843 上传时间:2022-07-26 格式:DOCX 页数:26 大小:1.33MB
返回 下载 相关 举报
2022年强化训练北师大版八年级数学下册第一章三角形的证明定向练习试卷.docx_第1页
第1页 / 共26页
2022年强化训练北师大版八年级数学下册第一章三角形的证明定向练习试卷.docx_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《2022年强化训练北师大版八年级数学下册第一章三角形的证明定向练习试卷.docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版八年级数学下册第一章三角形的证明定向练习试卷.docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第一章三角形的证明定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组数中,能作为直角三角形三边长的是( )A1,2,B8,9,10C,D,2、如图,等题直角OAB中,过

2、点A作,若线段上一点C满足,则的度数为( )ABCD3、等腰三角形的一个角是80,则它的一个底角的度数是( )A50B80C50或80D100或804、ABC中,A,B,C所对的边分别是a,b,c下列条件中不能说明ABC是直角三角形的是( )Ab2- c2=a2Ba:b:c= 5:12:13CA:B:C = 3:4:5DC =A -B5、如图,RtABC中,C90,利用尺规在BC,BA上分别截取BE,BD,使BEBD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在CBA内交于点F;作射线BF交AC于点G若CG1,P为AB上一动点,则GP的最小值为()A无法确定BC1D26、一副三角板如图

3、放置,点A在DF的延长线上,DBAC90,E30,C45,若BC/DA,则ABF的度数为()A15B20C25D307、点P在AOB的平分线上(不与点O重合),PCOA于点C,D是OB边上任意一点,连接PD若PC=3,则下列关于线段PD的说法一定正确的是()APD=POBPD3C存在无数个点D使得PD=PCDPD38、下列三个数为边长的三角形不是直角三角形的是( )A3,3,B4,8,C6,8,10D5,5,9、等腰三角形的一个顶角是80,则它的底角是( )A40B50C60D7010、下列说法中,错误的是( )A等边三角形的三条中线、角平分线、高线都交于一点B若两个三角形全等,则它们的面积也

4、相等C有两条边及一角对应相等的两个三角形全等D斜边和一直角边对应相等判定直角三角形全等第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,点在边上,若,则的度数为_2、如图,正三角形ABC中,D是AB的中点,于点E,过点E作与BC交于点F若,则的周长为_3、等腰ABC的顶角为30,腰长为8,则ABC的面积为_4、在等腰ABC中,A40,则B_5、一个直角三角形房梁如图所示,其中,垂足为,那么_三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy中,点M(2,t-2)与点N关于过点(0,t)且垂直于y轴的直线对称(1)当t =-3时,点N的

5、坐标为 ;(2)以MN为底边作等腰三角形MNP当t =1且直线MP经过原点O时,点P坐标为 ;若MNP上所有点到x轴的距离都不小于a(a是正实数),则t的取值范围是 (用含a的代数式表示)2、如图,已知线段a和EAF,点B在射线AE上在EAF中画出ABC,使点C在射线AF上,且BCa(1)依题意将图补充完整;(2)如果A45,AB4,BC5,求ABC的面积3、如图1,CACB,CDCE,ACB=DCE=,AD、BE交于点H,连CH(1)AHE_(用表示)(2)如图2,连接CH,求证:CH平分AHE;(3)如图3,若=60,P,Q 分别是AD,BE的中点,连接CP,PQ,CQ请判断三角形PQC的

6、形状,并证明4、如图,在平面直角坐标系中,直线交轴于点,交轴正半轴于点,且,正比例函数交直线于点,轴于点,轴于点(1)求直线的函数表达式和点的坐标;(2)在轴负半轴上是否存在点,使得APQ为等腰三角形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由5、已知,ABC中,A+2B=180(1)如图1,求证:AB=AC;(2)如图2,D是ABC外一点连接AD、BD,且AB=AD,作的平分线交BD于点E,若,求AED的度数;(3)如图3,在(2)的条件下,连接CD交AE于点F,若AF=2,BE=3,求DE的长-参考答案-一、单选题1、A【分析】比较较小的两边的平方和是否等于较长边的平方来判定

7、即可【详解】解:A、,能构造直角三角形,故符合题意;B、,不能构造直角三角形,故不符合题意;C、,不能构造直角三角形,故不符合题意;D、,不能构造直角三角形,故不符合题意;故选:A【点睛】此题考查勾股定理的逆定理,三角形的两边的平方和等于第三边的平方,则此三角形为直角三角形,熟练运用这个定理是解题关键2、C【分析】过点作,交的延长线于,于,由“”可证,可得,由“”可证,可得,即可求解【详解】解:如图,过点作,交的延长线于,于,又,又,在和中,在和中,故选:C【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质等知识,添加恰当辅助线构造全等三角形是本题的关键3、C【分析

8、】已知给出一个角的的度数为80,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可【详解】解:等腰三角形的一个角是80,当80为底角时,它的一个底角是80,当80为顶角时,它的一个底角是,则它的一个底角是50或80故选:C【点睛】本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键4、C【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可【详解】A. b2- c2=a2,根据勾股定理逆定理可以判断,ABC是直角三角形,故不符合题意;B. a:b:c= 5:12:13,设,则,则,根据勾股定理逆定理可以判断,ABC是直角三角形,故不符合题意;C. A:B:C =

9、3:4:5,设A、B、C分别是,则,则,所以ABC是不直角三角形,故符合题意; D. C =A -B,又A+B+C=180,则A=90,是直角三角形,故不符合题意,故选C.【点睛】本题考查了直角三角形的判定,涉及了勾股定理的逆定理、三角形内角和定理等知识,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断5、C【分析】如图,过点G作GHAB于H根据角平分线的性质定理证明GHGC1,利用垂线段最短即可解决问题【详解】解:如图,过点G作GHAB于H由作图可知,GB平分ABC,GHBA,GCBC,GHGC1,根据垂

10、线段最短可知,GP的最小值为1,故选:C【点睛】本题考查了垂线段最短,角平分线的性质定理,尺规作图作角平分线,掌握角平分线的性质是解题的关键6、A【分析】先求出EFD=60,ABC=45,由BCAD,得到EFD=FBC=60,则ABF=FBC-ABC=15【详解】解:DBAC90,E30,C45,EFD=60,ABC=45,BCAD,EFD=FBC=60,ABF=FBC-ABC=15,故选A【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键7、D【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为3,再根据垂线段最短解答即可【详解】解:

11、点P在AOB的平分线上,PCOA于点C,PC=3, 点P到OB的距离为3,点D是OB边上的任意一点,根据垂线段最短,PD3故选:D【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键8、D【分析】根据勾股定理的逆定理,若两条短边的平方和等于最长边的平方,那么就能够成直角三角形来判断【详解】解:A、3232()2,能构成直角三角形,故此选项不合题意;B、42()282,能构成直角三角形,故此选项不符合题意;C、6282102,能构成直角三角形,故此选项不合题意;D、5252()2,不能构成直角三角形,故此选项符合题意故选:D【点睛】本题考查了勾股定理的

12、逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断9、B【分析】依据三角形的内角和是180以及等腰三角形的性质即可解答【详解】解:(180-80)2=1002=50;答:底角为50故选:B【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点10、C【分析】(1)等边三角形中,中线、高线、角平分线三线合一,且全部都交于同一点;(2)两个全等的三角形,大小、形状都相同,面积也相同;(3)利用两边一角证明三角形全等时,要求两边夹一角;(4)直角三角形全等时,只需要说明斜边、直角边对应相等即可;

13、【详解】解:A选项中等边三角形中,中线、高线、角平分线三线合一,且全部都交于同一点,表述正确,故不符合题意;B选项中两个全等的三角形面积相同,表述正确,故不符合题意;C选项中有两条边及一角对应相等时无法证明两个三角形全等,表述错误,故符合题意;D选项中斜边和一直角边对应相等判定直角三角形全等,表述正确,故不符合题意;故选C【点睛】本题考察了三角形全等的判定条件以及性质,等边三角形的性质解题的关键在于理解特殊三角形的性质与三角形全等的判定与性质二、填空题1、【分析】先求出EDC=35,然后根据平行线的性质得到C=EDC=35,再由直角三角形两锐角互余即可求解【详解】解:1=145,EDC=35,

14、DEBC,C=EDC=35,又A=90,B=90-C=55,故答案为:55【点睛】本题主要考查了平行线的性质,直角三角形两锐角互余,求出C的度数是解题的关键2、18【分析】利用正三角形ABC以及平行关系,求出是等边三角形,在中,利用含角的直角三角形的性质,求出的长,进而得到长,最后即可求出的周长【详解】解:是等边三角形,为等边三角形,由于D是AB的中点,故,,在中,,故答案为:18【点睛】本题主要是考查了等边三角形的判定及性质、含角的直角三角形的性质,熟练地综合应用等边三角形和含角的直角三角形的性质求解边长,是解决该题的关键3、16【分析】过点B作BDAC,利用30所对的直角边是斜边的一半,可

15、求出BD,然后求面积即可【详解】解:如图所示,过点B作BDAC,A=30,AB=AC=8,BD=AB=,SABC=BDAC=16故答案为:16【点睛】此题考查的是直角三角形的性质:30所对的直角边是斜边的一半和面积的求法,掌握构造辅助线的方法是解决此题的关键4、40或70或100【分析】本题要分两种情况讨论:当A=40为顶角;当A=40为底角时,则B为底角时或顶角然后求出B【详解】分两种情况讨论:当A=40为顶角时,;当A=40为底角时,B为底角时B=A=40;B为顶角时B=180AC=1804040=100故答案为:40或70或100【点睛】本题考查等腰三角形的性质,解题的关键是掌握等腰三角

16、形的性质,分情况讨论问题.5、【分析】利用直角三角形中,30角所对的直角边等于斜边的一半,即可求解【详解】解:, , , , , 故答案为:【点睛】本题主要考查了直角三角形的性质,熟练掌握直角三角形中,30角所对的直角边等于斜边的一半是解题的关键三、解答题1、(1)(2,-1);(2)(-2,1);ta+2或t-a-2【分析】(1)先求出对称轴,再表示N点坐标即可;(2)以MN为底边作等腰三角形MNP,则点P在直线y=t=1上,直线OM与y=1的交点即为所求;表示出M、N、P的坐标,比较纵坐标的绝对值即可【详解】(1)过点(0,t)且垂直于y轴的直线解析式为y=t点M(2,t-2)与点N关于过

17、点(0,t)且垂直于y轴的直线对称可以设N点坐标为(2,n),且MN中点在y=t上,记得点N坐标为当t =-3时,点N的坐标为(2)以MN为底边作等腰三角形MNP,且点M(2,t-2)与点N直线y=t对称点P在直线y=t上,且P是直线OM与y=1的交点当t =1时M(2,-1),N(2,3)OM直线解析式为当y=1时,P点坐标为(-2,1)由题意得,点M坐标为(2,t-2),点N坐标为,点P坐标为,MNP上所有点到x轴的距离都不小于a只需要或者当M、N、P都在x轴上方时,此时,解得ta+2当MNP上与x轴有交点时,此时MNP上所有点到x轴的距离可以为0,不符合要求;当M、N、P都在x轴下方时,

18、此时,解得t-a-2综上ta+2或t-a-2【点睛】本题考查坐标与轴对称、等腰三角形的性质等知识,解题的关键是利用轴对称表示坐标,属于中考常考题型2、(1)图见解析;(2)2或14【分析】(1)以点为圆心,长为半径画弧,交于点即可得;(2)过点作于点,先根据等腰直角三角形的判定与性质可得,再利用勾股定理可得,从而可得,然后利用三角形的面积公式即可得【详解】解:(1)如图,和即为所求;(2)如图,过点作于点,是等腰直角三角形,解得(负值已舍),的面积为,的面积为,综上,的面积为2或14【点睛】本题主要考查学生一个作图能力和分类讨论思想,涉及的知识点有等腰直角三角形和勾股定理,解题的关键是熟练掌握

19、等腰直角三角形的性质和勾股定理的运用,以及分类讨论的数学思想3、(1);(2)证明见详解;(3)为等边三角形,证明见详解【分析】(1)由题意及全等三角形的判定定理可得ACDBCE,再根据全等三角形的性质及三角形内角和外角的性质即可得出结果;(2)过点C作,由全等三角形的判定和性质可得:ACMBCN,利用角平分线的判定即可证明;(3)根据全等三角形的判定和性质可得:APCBQC,根据图形及角之间的关系可得,即可证明结论【详解】解:(1)如图所示:设BC与AD相交于点F,即,在与中,ACDBCE,故答案为:;(2)如图所示:过点C作,ACDBCE,在ACM与BCN中,ACMBCN,CH平分;(3)

20、为等边三角形,理由如下:ACDBCE,P、Q为AD、BE中点,在与BQC中,APCBQC,为等边三角形【点睛】题目主要考查全等三角形的判定和性质,角平分线的判定和性质,三角形内角和定理等,理解题意,熟练掌握,综合运用这些知识点是解题关键4、(1)直线AB的解析式为;(2)当点为或时,为等腰三角形,理由见详解【分析】(1)根据点A的坐标及,可确定点,设直线AB的解析式为:,将A、B两点代入求解即可确定函数解析式;将两个一次函数解析式联立解方程组即可确定点P的坐标;(2)设且,由,坐标可得线段, 的长度,然后根据等腰三角形进行分类:当时,当时,当时,分别进行求解即可得【详解】解:(1),设直线AB

21、的解析式为:,将A、B两点代入可得:,解得:,直线AB的解析式为;将两个一次函数解析式联立可得:,解得:,;(2)设且,由,可得:, ,为等腰三角形,需分情况讨论:当时,可得,解得:或(舍去);当时,可得:,方程无解;当时,可得:,解得:,综上可得:当点为或时,为等腰三角形【点睛】题目主要考查利用待定系数法确定一次函数解析式、一次函数交点与方程组的关系、等腰三角形的性质、坐标系中两点之间的距离等,理解题意,综合运用这些知识点是解题关键5、(1)见解析;(2)60;(3)12【分析】(1)已知条件结合三角形内角和定理证明ABC为等边三角形即可;(2)先说明ABC为等边三角形,即BAC=ABC=C

22、=60,设ABD=x,则D=ABD=x,然后根据四边形的内角和用x表示出CAD,进而表示出EAD,最后根据三角形内角和即可解答;(3)如图:作AMBD,根据题意说明MD=MB,进而说明AECD,设AE=x,则MD=x+3,然后根据线段的和差列方程解答即可【详解】(1)证明:ABCA+B+C=180A+B+C=A+2BB=C;解:(2),ABC是等边三角形BAC=ABC=C=60设ABD=x,则D=ABD=x,四边形ACBDC+DBC+D+DAC=360,即60+60+x+x+DAC=360DAC=240-2x作的平分线交于点EEAD=DAC=120-xAEDD+AED+EAD=180,即x+AED+120-x =180,解得AED=60;(3)作AMBDAB=ADMD=MBAC=AD,AE平分CADAECD由(2)得AED=60,设ME=xAE=2x,DE=2EF,BM=MF=x+3DE=MD+ME=2x+3EF= AE=EF+AF=+3+3=2x,解得:x=DE=2x+3=12【点睛】本题主要考查了三角形内角和、四边形内角和、等边三角形的判定与性质、等腰三角形的性质,含30的直角三角形的性质等知识点,灵活应用相关知识点成为解答本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁