《2021-2022学年浙教版初中数学七年级下册第四章因式分解章节测试试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解章节测试试题(无超纲).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第四章因式分解章节测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列从左边到右边的变形,属于因式分解的是( )A.B.C.D.2、把多项式a39a分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(a+3)(a3)3、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2)C.4m2+n2(2m+n)(2mn)D.4、已知mn2,则m2n24n的值为()A.3B.4C.5D.65、
2、下列等式中,从左到右是因式分解的是( )A.B.C.D.6、已知,则代数式的值为( )A.B.1C.D.27、下列各式中从左到右的变形,是因式分解的是( )A.B.C.D.8、下面从左到右的变形中,因式分解正确的是()A.2x24xy2x(x+2y)B.x2+9(x+3)2C.x22x1(x1)2D.(x+2)(x2)x249、下列各式变形中,是因式分解的是( )A.B.C.D.10、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)211、下列各式中与b2a2相等的是(
3、)A.(ba)2B.(a+b)(ab)C.(a+b)(a+b)D.(a+b)(ab)12、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)13、下列因式分解正确的是( )A.B.C.D.14、下列各选项中因式分解正确的是( )A.x21(x1)2B.a32a2aa2(a2)C.2y24y2y(y2)D.a2b2abbb(a1)215、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、若ab0,则a2b2_0(填“”
4、,“”或“”)2、如果两个多项式有公因式,则称这两个多项式为关联多项式,若x225与(xb)2为关联多项式,则b_;若(x1)(x2)与A为关联多项式,且A为一次多项式,当Ax26x2不含常数项时,则A为_3、因式分解:_4、若,则代数式的值等于_5、若,则_6、因式分解:_7、若mn3,mn7,则m2nmn2_8、已知ab5,ab2,则a2b+ab2_9、多项式的公因式是_10、6x3y23x2y3分解因式时,应提取的公因式是_三、解答题(3小题,每小题5分,共计15分)1、(1)解方程组: (2)分解因式:2、发现与探索 (1)根据小明的解答将下列各式因式分解小明的解答:= = = (2)
5、根据小丽的思考解决下列问题:小丽的思考:代数式,再加上4,则代数式,则有最小值为4说明:代数式的最小值为60请仿照小丽的思考解释代数式的最大值为6,并求代数式的最大值3、分解因式:(1)2x218;(2)3m2n12mn12n;(3)(ab)26(ab)9;(4)(x29)236x2-参考答案-一、单选题1、C【分析】根据因式分解的定义判断即可.【详解】解:A,D选项的等号右边都不是积的形式,不符合题意;B选项,x2+4x+4=(x+2)2,所以该选项不符合题意;C选项,x2-2x+1=(x-1)2,符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟练掌握因式分解的定义是解题的关键,把一
6、个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.2、D【分析】先用提公因式法,再用平方差公式即可完成.【详解】a39aa(a29)a(a+3)(a3).故选:D.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.3、C【分析】根据因式分解的各种方法逐个判断即可.【详解】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.故本选项符合题意;D.,所以,故本选项不符合题意;故选:C.【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.4、B【分析】先根据平方
7、差公式,原式可化为,再把已知代入可得,再应用整式的加减法则进行计算可得,代入计算即可得出答案.【详解】解:=把代入上式,原式=,把代入上式,原式=22=4.故选:B.【点睛】本题考查了运用平方差公式进行因式分解,解题的关键是熟练掌握平方差公式.5、B【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义
8、,熟知定义是解题的关键.6、D【分析】由已知等式可得,将变形,再代入逐步计算.【详解】解:,=2故选D.【点睛】本题考查了代数式求值,因式分解的应用,解题的关键是掌握整体思想,将所求式子合理变形.7、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.,单项式不能因式分解,故此选项不符合题意;B.,是因式分解,故此选项符合题意;C.,是整式计算,故此选项不符合题意;D.,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定
9、义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.8、A【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、把一个多项式转化成两个整式乘积的形式,故A正确;B、等式不成立,故B错误;C、等式不成立,故C错误;D、是整式的乘法,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.9、D【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、等式的右边不是整式的积的形式,故A错误;B、等式右边分母含有字母不是因式分解,故B错误;C、等式的
10、右边不是整式的积的形式,故C错误;D、是因式分解,故D正确;故选D.【点睛】本题考查了因式分解的定义,因式分解是把一个多项式转化成几个整式乘积的形式.10、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11、C【分析】根据平
11、方差公式直接把b2a2分解即可.【详解】解:b2a2(ba)(b+a),故选:C.【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式.平方差公式:a2-b2=(a+b)(a-b).12、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16aa(x28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.13、C【分析】利用平方差公式、完全平方公式、提公因式法分解因式,分别进行判断即可.【详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误;故选:C.【点睛】此题主要考查了公式法
12、分解因式,关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a22ab+b2=(ab)2.14、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A、,选项错误;B、,选项错误;C、 ,选项错误;D、,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.15、D【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:x2+x2;x2+3x+2;x2x2;x23x+2.有因式x1的是.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因
13、式分解,即.二、填空题1、【分析】将a2-b2因式分解为(a+b)(a-b),再讨论正负,和积的正负,得出结果.【详解】解:ab0,a+b0,a-b0,a2-b2=(a+b)(a-b)0.故答案为:.【点睛】本题考查了因式分解,解题的关键是先把整式a2-b2因式分解,再利用ab0得到a-b和a+b的正负,利用负负得正判断大小.2、5 -2x-2或-x-2 【分析】先将x2-25因式分解,再根据关联多项式的定义分情况求出b;再分A=k(x+1)=kx+k或A=k(x+2)=kx+2k两种情况,根据不含常数项.【详解】解:x2-25=(x+5)(x-5),x2-25的公因式为x+5、x-5.若x2
14、-25与(x+b)2为关联多形式,则x+b=x+5或x+b=x-5.当x+b=x+5时,b=5.当x+b=x-5时,b=-5.综上:b=5.(x+1)(x+2)与A为关联多项式,且A为一次多项式,A=k(x+1)=kx+k或A=k(x+2)=kx+2k,k为整数.当A=k(x+1)=kx+k(k为整数)时,若A+x2-6x+2不含常数项,则k+2=0,即k=-2.A=-2(x+1)=-2x-2.当A=k(x+2)=kx+2k(k为整数)时,若A+x2-6x+2不含常数项,则2k+2=0,即k=-1.A=-x-2.综上,A=-2x-2或A=-x-2.故答案为:5,-2x-2或-x-2.【点睛】本
15、题主要考查多项式、公因式,熟练掌握多项式、公因式的意义是解决本题的关键.3、a(a+1)(a-1)【分析】先找出公因式,然后提取公因式,再利用平方差公式分解因式即可.【详解】解:故答案为:.【点睛】本题考查了用提公因式法分解因式,准确找出公因式是解题的关键.4、4【分析】直接利用已知代数式将原式得出x+y=2,再将原式变形把数据代入求出答案.【详解】解:x+y-2=0,x+y=2,则代数式x2+4y-y2=(x+y)(x-y)+4y=2(x-y)+4y=2(x+y)=4.故答案为:4.【点睛】此题主要考查了公式法的应用,正确将原式变形是解题关键.5、3【分析】利用因式分解求出的值,再代入中即可
16、.【详解】解:,取或,将的值,再代入中,故答案是:.【点睛】本题考查了因式分解,解题的关键是利用十字交叉相乘法进行因式分解,求出.6、【分析】先提公因式,再用平方差公式分解即可.【详解】故答案为:【点睛】本题综合考查了提公因式法和公式法分解因式,一般地,因式分解的步骤是:先考虑提公因式;其次考虑用公式法.另外,因式分解要分解到再也不能分解为止.7、21【分析】把所求的式子提取公因式mn,得mn(m-n),把相应的数字代入运算即可.【详解】解:mn=3,m-n=7,m2n-mn2=mn(m-n)=37=21.故答案为:21.【点睛】本题主要考查因式分解-提公因式法,解答的关键是把所求的式子转化成
17、含已知条件的式子的形式.8、10【分析】先用提公因式法将a2b+ab2变形为ab(ab),然后代值计算即可得到答案.【详解】解:a2b+ab2ab(a+b)ab(ab).ab5,ab2,a2b+ab2ab(ab)5(2)10.故答案为:10.【点睛】本题主要考查了用提公因式法因式分解,解题的关键在于能够熟练掌握因式分解的方法.9、【分析】找出多项式中各单项式的公共部分即可.【详解】解:多项式的公因式是:,故答案为:.【点睛】本题主要考查公因式的概念,找出多项式中各单项式的公共部分是解题的关键.10、3x2y2【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:
18、6x3y2-3x2y3=3x2y2(2x-y),因此6x3y2-3x2y3的公因式是3x2y2.故答案为:3x2y2.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.三、解答题1、(1);(2).【分析】(1)利用代入消元法解方程组即可得到答案;(2)先提取公因式,再利用平方差公式分解即可.【详解】解:(1),代入得,3x+2(2x-1)=5,x=1,把x=1代入得,y=2-1,y=1,原方程组的解集是;(2).【点睛】本题考查了因式分解与解二元一次方程组,能够准确找到公因式
19、是解决此题关键.2、(1);(2)见解析;【分析】(1)仿照小明的解答过程、利用完全平方公式、平方差公式计算;(2)仿照小丽的思考过程,利用完全平方公式、平方差公式计算、偶次方的非负性解答.【详解】解:(1)(2)解:代数式无论a取何值再减去60,则代数式则有最小值-60代数式的最小值为60.解释:无论a取何值,再加上6,则代数式则有最大值6求值:代数式有最大值30.【点睛】本题考查的是因式分解的应用、偶次方的非负性,掌握完全平方公式、平方差公式、偶次方的非负性是解题的关键.3、(1)2(x+3)(x-3);(2)3n(m-2)2;(3)(a+b-3)2;(4)(x+3)2(x-3)2【分析】(1)原式提取2,再利用平方差公式分解即可;(2)原式提取3n,再利用完全平方公式分解即可;(3)原式利用完全平方公式分解即可;(4)原式利用平方差公式及完全平方公式分解即可.【详解】解:(1)原式=2(x2-9)=2(x+3)(x-3);(2)原式=3n(m2-4m+4)=3n(m-2)2;(3)原式=(a+b-3)2;(4)原式=(x2+9+6x)(x2+9-6x)=(x+3)2(x-3)2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.