《2021-2022学年浙教版初中数学七年级下册第四章因式分解同步测试试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解同步测试试题(无超纲).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第四章因式分解同步测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2)C.4m2+n2(2m+n)(2mn)D.2、已知下列多项式:;.其中,能用完全平方公式进行因式分解的有( )A.B.C.D.3、下列从左边到右边的变形,属于因式分解的是( )A.B.C.D.4、下列各式中,能用完全平方公式因式分解的是( )A.B.C.D.5、下列等式从左到右的变形,属于因式分解的
2、是()A.m (a+b)ma+mbB.x2+2x+1x(x+2)+1C.x2+xx2(1+)D.x29(x+3)(x3)6、的值为( )A.B.C.D.3537、多项式的因式为( )A.B.C.D.以上都是8、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)9、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,现将3a(x21)3b(x21)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱新化C.我爱新化D.新化数学
3、10、若,则的值为( )A.2B.3C.4D.611、下列各式从左边到右边的变形中,属于因式分解的是( )A.B.C.D.12、下列各式从左到右的变形中,是因式分解的为( ).A.B.C.D.13、下列等式中,从左到右是因式分解的是( )A.B.C.D.14、下列各式由左到右的变形中,属于因式分解的是( ).A.B.C.D.15、下列分解因式的变形中,正确的是( )A.xy(xy)x(yx)x(yx)(y1)B.6(ab)22(ab)(2ab)(3ab1)C.3(nm)22(mn)(nm)(3n3m2)D.3a(ab)2(ab)(ab)2(2ab)二、填空题(10小题,每小题4分,共计40分)
4、1、若,则a2bab2_2、分解因式:3mn212m2n_3、若多项式9x2+kxy+4y2能用完全平方公式进行因式分解,则k_4、分解因式:x27xy18y2_5、已知,则_6、已知ab5,ab2,则a2b+ab2_7、因式分解:a3-16a=_8、由多项式与多项式相乘的法则可知:即:(ab)(a2abb2)a3a2bab2a2bab2b3a3b3即:(ab)(a2abb2)a3b3,我们把等式叫做多项式乘法的立方和公式同理,(ab)(a2abb2)a3b3,我们把等式叫做多项式乘法的立方差公式请利用公式分解因式:64x3y3_9、若,则_10、已知x+y2,xy4,则x2y+xy2_三、解
5、答题(3小题,每小题5分,共计15分)1、因式分解: 2、分解因式:(1); (2)3、探究:如何把多项式x2+8x+15因式分解? (1)观察:上式能否可直接利用完全平方公式进行因式分解? 答:_; (2)(阅读与理解):由多项式乘法,我们知道(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左地使用,即可对形如x2+(a+b)x+ab的多项式进行因式分解,即:x2+(a+b)x+ab=(x+a)(x+b)此类多项式x2+(a+b)x+ab的特征是二次项系数为1,常数项为两数之积,一次项系数为这两数之和猜想并填空:x2+8x+15=x2+(_)+(_)x+(_)(_)=(x+_)(
6、x+_)(3)上面多项式x2+8x+15的因式分解是否符合题意,我们需要验证请写出验证过程(4)请运用上述方法将下列多项式进行因式分解:x2-x-12-参考答案-一、单选题1、C【分析】根据因式分解的各种方法逐个判断即可.【详解】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.故本选项符合题意;D.,所以,故本选项不符合题意;故选:C.【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.2、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:不能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;故选:D.【点
7、睛】本题考查了公式法分解因式,掌握a22ab+b2=(ab)2是解题的关键.3、C【分析】根据因式分解的定义判断即可.【详解】解:A,D选项的等号右边都不是积的形式,不符合题意;B选项,x2+4x+4=(x+2)2,所以该选项不符合题意;C选项,x2-2x+1=(x-1)2,符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟练掌握因式分解的定义是解题的关键,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4、C【分析】根据完全平方公式的特点判断即可;【详解】不能用完全平方公式,故A不符合题意;不能用完全平方公式,故B不符合题意;,能用完全平方公式,故C符合题意;不能
8、用完全平方公式,故D不符合题意;故答案选C.【点睛】本题主要考查了因式分解公式法的判断,准确判断是解题的关键.5、D【分析】根据因式分解的定义是把一个多项式化为几个整式的积的形式的变形,可得答案.【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、因为的分母中含有字母,不是整式,所以没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选:D.【点睛】本题主要考查了因式分解的定义,熟练掌握因式分解是把一个多项式化为几个整式的积的形式的变形是解题的关键.6
9、、D【分析】观察式子中有4次方与4的和,将因式分解,再根据因式分解的结果代入式子即可求解【详解】原式故答案为:【点睛】本题考查了因式分解的应用,找到是解题的关键.7、D【分析】将先提公因式因式分解,然后运用平方差公式因式分解即可.【详解】解:,、,均为的因式,故选:D.【点睛】本题考查了提公因式法因式分解以及运用平方差公式因式分解,熟练运用公式法因式分解是解本题的关键.8、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16aa(x28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.9、C【分析】把
10、所给的式子运用提公因式和平方差公式进行因式分解,查看对应的字即可得出答案.【详解】解:,x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,结果呈现的密码信息可能是:我爱新化,故选:C.【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法和套用平方差公式.10、C【分析】把变形为,代入a+b=2后,再变形为2(a+b)即可求得最后结果.【详解】解:a+b=2,a2-b2+4b=(a-b)(a+b)+4b,=2(a-b)+4b,=2a-2b+4b,=2(a+b),=22,=4.故选:C.【点睛】本题考查了代数式求值的方法,同时还利用了整体思想.11、B【分析】把一
11、个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此解答即可.【详解】解:A、是整式乘法,不是因式分解,故此选项不符合题意;B、符合因式分解的定义,是因式分解,故此选项符合题意;C、右边不是整式积的形式,不是因式分解,故此选项不符合题意;D、,分解错误,故此选项不符合题意;故选:B.【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.12、B【分析】根据因式分解的定义把一个多项式化成几个整式的积的形式,叫因式分解.然后对各选项逐个判断即可.【详解】解:A、两因式之间用加号连结,是和的形式不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、
12、将积化为和差形式,是多项式乘法运算,不是因式分解,故本选项不符合题意;D、两因式之间用加号连结,是和的形式,不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键 .13、B【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是
13、解题的关键.14、C【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A、是整式的乘法,故A不符合;B、没把一个多项式转化成几个整式积,故B不符合;C、把一个多项式转化成几个整式积,故C符合;D、没把一个多项式转化成几个整式积,故D不符合;故选:C.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积.15、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A、xy(x-y)-x(y-x)=-x(y-x)(y+1),故本选项正确;B、6(a+b)2-2(a+b)=2(a+b)(3a+3b
14、-1),故本选项错误;C、3(n-m)2+2(m-n)=(n-m)(3n-3m-2),故本选项错误;D、3a(a+b)2-(a+b)=(a+b)(3a2+3ab-1),故本选项错误.故选:A.【点睛】本题考查提公因式法分解因式.准确确定公因式是求解的关键.二、填空题1、1【分析】直接提取公因式ab,进而分解因式,把已知数据代入得出答案.【详解】解:ab,ab2,a2bab2ab(ab)21.故答案为:1.【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.2、3mn(n4m)【分析】根据提公因式法进行分解即可.【详解】3mn212m2n=3mn(n4m).故答案为:3mn(n
15、4m).【点睛】本题考查了因式分解,掌握提公因式法分解因式是解题的关键.3、12.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:9x2+kxy+4y2(3x)2+kxy +(2y)2,kxy23x2y12xy,解得k12.故答案为:12.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4、【分析】根据十字相乘法因式分解即可.【详解】x27xy18y2,故答案为:.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.5、3【分析】根据a=2019x+2019,b=2019x
16、+2020,c=2019x+2021,可以得到a-b、a-c、b-c的值,然后将所求式子变形,即可求得所求式子的值.【详解】解:a=2019x+2019,b=2019x+2020,c=2019x+2021,a-b=-1,a-c=-2,b-c=-1,= =3.故答案为:3.【点睛】本题考查了因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答.6、10【分析】先用提公因式法将a2b+ab2变形为ab(ab),然后代值计算即可得到答案.【详解】解:a2b+ab2ab(a+b)ab(ab).ab5,ab2,a2b+ab2ab(ab)5(2)10.故答案为:10.【点睛】本题主要考查了用提
17、公因式法因式分解,解题的关键在于能够熟练掌握因式分解的方法.7、a(a+4)(a-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=a(a2-16)=a(a+4)(a-4),故答案为:a(a+4)(a-4).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8、【分析】根据题意根据立方差公式因式分解即可.【详解】64x3y3故答案为:【点睛】本题考查了因式分解,根据题意套用立方差公式是解题的关键.9、3【分析】利用因式分解求出的值,再代入中即可.【详解】解:,取或,将的值,再代入中,故答案是:.【点睛】本题考查了因式分解,解题的关键是利
18、用十字交叉相乘法进行因式分解,求出.10、-8【分析】先提出公因式,进行因式分解,再代入,即可求解.【详解】解:x+y2,xy4,.故答案为: .【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并会根据多项式的特征选用合适的方法是解题的关键.三、解答题1、x(x+2y)(x-2y);(x+y-1)(x-y+1)【分析】先提取公因式,然后运用平方差公式因式分解即可;先运用完全平方公式将括号里因式分解,然后运用平方差公式因式分解即可.【详解】解:;.【点睛】本题考查了提公因式法因式分解与公式法因式分解,熟知乘法公式的结构特点是解题的关键.2、(1);(2).【分析】(1)先提
19、取公因式xy,然后再运用公式法分解即可;(2)采用分组法、再运用平方差公式因式分解即可.【详解】解:(1)=)=; (2)=.【点睛】本题主要考查了因式分解,掌握分组法、提取公因式法和公式法是解答本题的关键.3、(1)不能;(2)3;5;3;5;3;5;(3)x2+8x+15;(4)(x-4)(x+3)【分析】(1)根据完全平方公式的结构特征进行判断即可;(2)将x2+8x+15=x2+(3+5)x+(35)即可得出答案;(3)根据整式乘法计算(x+3)(x+5)的结果即可;(4)将x2+3+(-4)x+3(-4)即可得出答案.【详解】解:(1)因为x2+8x+16=(x+4)2,所以x2+8x+15不是完全平方公式,故答案为:不能;(2)x2+8x+15=x2+(3+5)x+(35)x2+8x+15=x2+(3+5)x+(35)=(x+3)(x+5),故答案为:3,5,3,5,3,5;(3)(x+3)(x+5)=x2+5x+3x+15=x2+8x+15,x2+8x+15=(x+3)(x+5)因此多项式x2+8x+15的因式分解是符合题意的;(4)x2-x-12=x2+3+(-4)x+3(-4)=(x+3)(x-4).【点睛】本题考查了十字相乘法分解因式,掌握x2+(a+b)x+ab=(x+a)(x+b)的结构特征是正确应用的前提.