《2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数专题测试试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数专题测试试卷(含答案详解).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版(上海)七年级数学第二学期第十二章实数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、9的平方根是()A3B3C3D2、在实数,1.12112111211112(每两 个2之间依次多一个1)
2、中,无理数有( )个A2B3C4D53、数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是( )ABCD4、若,则整数a的值不可能为( )A2B3C4D55、关于的叙述,错误的是()A是无理数B面积为8的正方形边长是C的立方根是2D在数轴上可以找到表示的点6、对于两个有理数、,定义一种新的运算:,若,则的值为( )ABCD7、下列各式中,化简结果正确的是( )ABCD8、有一个数值转换器,原理如下:当输入的x为64时,输出的y是( )AB2CD9、平方根和立方根都等于它本身的数是( )A1B1C0D110、三个实数,2,之间的大小关系()A2B2C2D2第卷(非选
3、择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若实数满足,则=_2、一列数按某规律排列如下,若第n个数为,则n_3、若,则x+1的平方根是 _4、按一定规律排列的一列数:3,32,31,33,3-4,37,311,318,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是_5、的整数部分是_三、解答题(10小题,每小题5分,共计50分)1、已知a、b互为倒数,c、d互为相反数,求(cd)21的值2、已知x2的平方根是2,x2y7的立方根是3,求3xy的算术平方根3、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2
4、天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天哪一种方法得到的钱数多?请说明理由(1年按365天计算)4、计算:(1);(2)5、求下列各数的平方根:(1)121 (2) (3)(-13)2 (4) 6、计算下列各题:(1);(2)(3)7、先化简:,再从中选取一个合适的整数代入求值8、求方程中x 的值(x1)2 16 = 09、计算:10、计算:(1)18+(17)+7+(8);(2)(12);(3)22+|1|+-参考答案-一、单选题1、A【分析】根据平方根的定义进行判断即可【详解】解:(3)299的平方根是3故选:A【点睛】本题考查的是平方根的
5、定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根2、C【分析】利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数【详解】有理数有:,一共四个无理数有:,1.12112111211112(每两 个2之间依次多一个1),一共四个故选:C【点睛】此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112,等有规律的数3、C【分析】首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由ABAC利用两点间的距离公式便可解答【详解】解:数轴上表
6、示1,的对应点分别为A,B,AB1,点B关于点A的对称点为C,ACAB点C的坐标为:1(1)2故选:C【点睛】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数知道两点间的距离,求较小的数,就用较大的数减去两点间的距离4、D【分析】首先确定和的范围,然后求出整式a可能的值,判断求解即可【详解】解:,即,即,又,整数a可能的值为:2,3,4,整数a的值不可能为5,故选:D【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法5、C【分析】根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解【详解】解:A、是无理数,该说法正确,故本选项不符合题意;B、
7、,所以面积为8的正方形边长是,该说法正确,故本选项不符合题意;C、8的立方根是2,该说法错误,故本选项符合题意;D、因为数轴上的点与实数是一一对应的,所以在数轴上可以找到表示的点,该说法正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键6、D【分析】根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.【详解】解: , , ,解得: 故选D【点睛】本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题
8、的关键.7、D【分析】根据实数的运算法则依次对选项化简再判断即可【详解】A、,化简结果错误,与题意不符,故错误B、,化简结果错误,与题意不符,故错误C、,化简结果错误,与题意不符,故错误D、,化简结果正确,与题意相符,故正确故选:D 【点睛】本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则8、C【分析】直接利用立方根以及算术平方根、无理数分析得出答案【详解】解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是,即故选:C【点睛】本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根9、C【分析】根据平方根和立方根的定义,可以求出平
9、方根和立方根都是本身数是0【详解】解:平方根是本身的数有0,立方根是本身的数有1,-1,0;平方根和立方根都是本身的数是0故选C【点睛】本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数a,b(b0),满足,那么a就叫做b的平方根;如果有两个数c、d满足,那么c就叫做d的立方根10、A【分析】,根据被开方数的大小即判断这三个数的大小关系【详解】2故选A【点睛】本题考查了实数大小比较,掌握无理数的估算是解题的关键二、填空题1、1【分析】根据绝对值与二次根式的非负性求出a,b的值,故可求解【详解】解:a-2=0,b-4=0a=2,b=4=故答案为:1【点睛】此题主要考查代数式求
10、值,解题的关键是熟知非负性的运用2、50【分析】根据题目中的数据可以发现,分子变化是,分母变化是,从而可以求得第个数为时的值,本题得以解决【详解】解:可写成分母为10开头到分母为1的数有10个,分别为第n个数为,则n1+2+3+4+9+550,故答案为50【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律3、【分析】根据平方根的定义求得的值,进而根据平方根的意义即可求得答案,平方根:如果一个数的平方等于,那么这个数就叫的平方根,其中属于非负数的平方根称之为算术平方根立方根:如果一个数的立方等于,那么这个数叫做的立方根【详解】解:,的平方根是故答案为:【点睛】本题主
11、要考查了平方根和立方根的定义,解决本题的关键是要熟练根据平方根的意义和平方根的定义进行求解4、bc=a【分析】首先判断出这列数中,3的指数各项依次为 1,2,1,3,4,7,11,18,从第三个数起,前两数相除等于第三个数,可得这列数中的连续三个数,满足abc,据此解答即可【详解】3,32,31,33,34,37,311,318,a,b,c满足的关系式是abc,即bc=a故答案为:bc=a【点睛】此题考查了实数的规律问题,同底数幂的除法运算,负整数指数幂等知识,解题的关键是正确分析出题目中指数之间的规律5、3【分析】先估算的近似值,然后进行计算即可【详解】解:,的整数部分是3,故答案为3【点睛
12、】本题考查了估算无理数的大小,解题的关键是熟练掌握求一个数的平方三、解答题1、0【分析】互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可【详解】解:根据题意得:ab1,cd0,则(cd)21的值1010【点睛】本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键2、5【分析】根据题意直接利用平方根以及立方根的性质得出x,y的值,进而利用算术平方根的定义得出答案【详解】解:x2的平方根是2,x24,解得:x6,x2y7的立方根是3,62y727,解得:y7,3xy25,3xy的算术平方根是5【点睛】本题主要考查平方根以及立方根的性质、算术平方根,正确得
13、出x,y的值是解题的关键3、第二种,理由见解析【分析】根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n1元钱即可得总数,然后比较大小即可知哪种方案得到的多【详解】解:第一种方法:110365=3650元第二种方法:1+2+22+23+24+219=2201=1048575分=10485.75元10485.753650第二种方法得到的钱多【点睛】本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在4、(1)1
14、;(2)【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可【详解】解:(1),=,=1;(2),=,=,=,=【点睛】本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键5、 (1)11; (2) ; (3)13; (4)8【分析】(1)直接根据平方根的定义求解;(2)把带分数化成假分数,再根据平方根的定义求解;(3)(4)先化简,再根据平方根的定义求解【详解】含有乘方运算先求出它的幂,再开平方(1)因为(11)2=121,所以
15、121的平方根是11;(2),因为, 所以的平方根是;(3)(-13)2=169,因为(13)2=169,所以(-13)2的平方根是13;(4)-(-4)3=64,因为(8)2=64,所以-(-4)3的平方根是8【点睛】本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数6、(1)-3(2)-6x(3)4y-3xz【分析】(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加(1)解:原式;(2
16、)解:原式;(3)解:【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab)n=anbn运算法则,整式的除法,理解a0=1(a0),(a0),牢记法则是解题关键7、或933或925或91【点睛】本题是一道以新定义为背景的阅读题目,能够根据定义列出代数式,根据各数的取值范围求出a、b、y的值是解答的关键72x-2,2【分析】根据分式的加法和除法可以化简题目中的式子,然后在中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题【详解】解:原式=,x取整数,x可取2,当x=2时,原式=22-2=2【点睛】本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法8、
17、或【分析】根据平方根的定义解方程即可,平方根:如果x2=a,则x叫做a的平方根,记作“”(a称为被开方数)【详解】解:(x1)2 16 = 0或解得或【点睛】本题考查了根据平方根的定义解方程,掌握平方根的定义是解题的关键9、1【分析】根据平方根与立方根可直接进行求解【详解】解:原式【点睛】本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键10、(1)0;(2)1;(3)【分析】(1)根据有理数的加法计算法则求解即可;(2)根据有理数的乘法分配律求解即可;(3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可【详解】解:(1) ;(2);(3)【点睛】本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键