《2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数专题测试试卷(精选含答案).docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪教版(上海)七年级数学第二学期第十二章实数专题测试试卷(精选含答案).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪教版(上海)七年级数学第二学期第十二章实数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、规定一种新运算:,如则的值是( )ABC6D82、对于两个有理数、,定义一种新的运算:,若,则的值为(
2、)ABCD3、下列判断中,你认为正确的是()A0的倒数是0B是分数C34D的值是34、如图,数轴上的点A,B,O,C,D分别表示数,0,1,2,则表示数的点P应落在( )A线段AB上B线段BO上C线段OC上D线段CD上5、以下正方形的边长是无理数的是( )A面积为9的正方形B面积为49的正方形C面积为8的正方形D面积为25的正方形6、估计的值在( )A5到6之间B6到7之间C7到8之间D8到9之间7、平方根和立方根都等于它本身的数是( )A1B1C0D18、已知a,b|,c(2)3,则a,b,c的大小关系是( )AbacBbcaCcbaDacb9、数轴上表示1,的对应点分别为A,B,点B关于点
3、A的对称点为C,则点C所表示的数是( )ABCD10、在, 0, , , 0.010010001, , 0.333, , 3.1415,2.010101(相邻两个1之间有1个0)中,无理数有( )A2个B3个C4个D5个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若a、b为实数,且满足|a-3|+=0,则a-b的值为_2、若一个正数的两个平方根分别为,则_ ,这个正数是_3、立方等于-27的数是_.4、已知x,y为实数,且,则的值为_5、观察下列关于正整数的等式:7*5*23514108*6*34824185*4*2201008根据你发现的规律,请计算3*4*5_三
4、、解答题(10小题,每小题5分,共计50分)1、如图是一个无理数筛选器的工作流程图(1)当x为16时,y值为_;(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?(4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个2、计算(1)(2)3、众所周知,所有实数都可以用数轴上的点来表示其中,我们将数轴上表示正整数的点称为“正点”取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(ab)定义:若数mb3a3
5、,则称数m为“复合数”例如:若“正点”P所表示的数为3,则a2,b4,那么m432356,所以56是“复合数”(提示:b3a3(ba)(b2+ab+a2)(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”4、如图1,依次连接22方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为(1)图1中阴影正方形的边长为 ;点P表示的实数为 ;(2)如图2,在44方格中阴影正方形的边长为a写出边长a的值请仿照(1)中的作图在数轴上表示实数a+15、对于有理数a,b,定义运算:(1
6、)计算的值; (2)填空_:(填“”、“”或“”)(3)与相等吗?若相等,请说明理由6、解方程,求x的值(1) (2)7、已知x2的平方根是2,x2y7的立方根是3,求3xy的算术平方根8、若一个四位自然数满足千位数字比十位数字大3,百位数字比个位数字大3,我们称这个数为“多多数”将一个“多多数”各个数位上的数字倒序排列可得到一个新的四位数,记例如:,则(1)判断7643和4631是否为“多多数”?请说明理由;(2)若为一个能被13整除的“多多数”,且,求满足条件的“多多数”9、已知一个正数x的平方根是a+3和2a-15,求a和x的值10、计算:(1);(2)-参考答案-一、单选题1、C【分析
7、】根据新定义计算法则把转化为常规下运算得出,然后按有理数运算法则计算即可【详解】解:,故选择C【点睛】本题考查新定义运算,掌握新定义运算的要点,含乘方的有理数混合运算是解题关键2、D【分析】根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.【详解】解: , , ,解得: 故选D【点睛】本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.3、C【分析】根据倒数的概念即可判断A选项,根据分数的概念即可判断B选项,根据无理数的估算方法即可判断C选项,根据算术平方根的概念即可判断D选项【详解】解:A、0不能作分母,所以0
8、没有倒数,故本选项错误;B、属于无理数,故本选项错误;C、因为 91516,所以 34,故本选项正确;D、的值是3,故本选项错误故选:C【点睛】此题考查了倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念,解题的关键是熟练掌握倒数的概念,分数的概念,无理数的估算方法以及算术平方根的概念4、B【分析】根据,得到,根据数轴与实数的关系解答【详解】解:,表示的点在线段BO上,故选:B【点睛】本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键5、C【分析】理解无理数的分类:无限不循环小数或开方不能开尽的数,求出正方形边长由此判断即可得出【详解】解:A、面积为9的正方形的边
9、长为3,是整数,属于有理数,故本选项不合题意;B、面积为49的正方形的边长为7,是整数,属于有理数,故本选项不合题意;C、面积为8的正方形的边长为,是无理数,故本选项符合题意;D、面积为25的正方形的边长为5,是整数,属于有理数,故本选项不合题意故选:C【点睛】本题主要考查了无理数的分类,准确掌握无理数的分类是解题关键6、C【分析】将根号部分平方后得44即可看出,由此可判断其在6到7之间,再利用不等式的性质进行求解判断即可【详解】,故选:C【点睛】本题考查二次根式的估值,关键在于利用平方法找到其大概的取值范围7、C【分析】根据平方根和立方根的定义,可以求出平方根和立方根都是本身数是0【详解】解
10、:平方根是本身的数有0,立方根是本身的数有1,-1,0;平方根和立方根都是本身的数是0故选C【点睛】本题主要考查了平方根和立方根的定义,熟知定义是解题的关键:如果有两个数a,b(b0),满足,那么a就叫做b的平方根;如果有两个数c、d满足,那么c就叫做d的立方根8、C【分析】本题主要是根据乘方、绝对值、负指数幂的运算进行求值,比较大小,负指数幂运算是根据:“底倒指反”,进行转化之后再化简,即:a=2;绝对值化简先判断绝对值内的数是正数还是负数,正数的绝对值是它本身,负数的绝对值是它的相反数,在进行化简,即b=;乘方运算中,负数的奇次幂还是负数,即:c=-8,据此进行数据的比较【详解】解:由题意
11、得:a=,b=,c-8,cba故选:C【点睛】本题主要考查的是乘方、绝对值、负指数幂的基础运算,熟练掌握其运算以及符号是解本题的关键9、C【分析】首先根据数轴上表示1,的对应点分别为A,B可以求出线段AB的长度,然后由ABAC利用两点间的距离公式便可解答【详解】解:数轴上表示1,的对应点分别为A,B,AB1,点B关于点A的对称点为C,ACAB点C的坐标为:1(1)2故选:C【点睛】本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数知道两点间的距离,求较小的数,就用较大的数减去两点间的距离10、C【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是
12、整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:=1,=2,,3,无理数有,2.010101(相邻两个1之间有1个0)共4个故选:C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001,等有这样规律的数二、填空题1、2【分析】根据非负性的性质解答,当两个非负数相加,和为0时,必须满足其中的每一项都等于0【详解】解:|a-3|+=0,a-3=0,b-1=0,a=3,b=1,a-b=3-1=2故答案为2【点睛】本题考查了非负数的性质,涉及绝对值的性质,算术平方根的性质,有理数的
13、减法掌握几个非负数的和为0时,这几个非负数都为0是解题的关键2、 【分析】根据平方根的性质,可得 ,从而得到 ,即可求解【详解】解:一个正数的两个平方根分别为, ,解得: ,这个正数为 故答案为: ;【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数是解题的关键3、-3【分析】根据立方根的定义解答即可【详解】解:(-3)3=-27,立方等于-27的数是-3故答案为-3【点睛】本题考查了有理数的乘方,熟悉乘方和立方根的定义是解题的关键4、2【分析】根据偶次幂及算术平方根的非负性可得x、y的值,然后问题可求解【详解】解:,;故答案为2【点睛】本题主要考查偶次幂及算术平方根的
14、非负性,熟练掌握偶次幂及算术平方根的非负性是解题的关键5、121520【分析】观察规律可知,算出3*4*5即可【详解】,故答案为:121520【点睛】本题考查数字类找规律问题,根据题目给出的信息找出规律是解题的关键三、解答题1、(1)(2)0,1(3)x0(4)x=3或x=9或x=81【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数(1)解:当x=16时,则y=;故答案是:(2)解:当x=0,1时,始终输不出y值因为0,1的算术平方根是0,1,一定是有理
15、数;(3)解:当x0时,导致开平方运算无法进行;(4)解: x的值不唯一x=3或x=9或x=81【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键2、(1);(2)【分析】(1)利用完全平方公式,平方差公式展开,合并同类项即可;(2)根据幂的意义,算术平方根,立方根的定义计算【详解】(1);(2)=【点睛】本题考查了完全平方公式,平方差公式,算术平方根即一个数的正的平方根,立方根如果一个数的立方等于a,则这个数叫做a的立方根;熟练掌握公式,正确理解算术平方根,立方根的定义是解题的关键3、(1)12不是复合数;证明见解析;(2)98和56【分析】(1)直接利用定义进行判断12不是
16、复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化【详解】(1)12不是复合数,找不到两个整数a,b,使a3b312,故12不是复合数,设“正点”P所表示的数为x(x为正整数),则ax1,bx+1,(x+1)3(x1)3 (x+1x+1)(x2+2x+1+x21+x22x+1)2(3x2+1)6x2+2,6x2+226x2一定能被6整除;(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),两个“复合数”的差是42,(6m2+2)(6n2+2)42,m2n27,m,n都是正整数,6m2+298,6n2+256,这
17、两个“复合数”为98和56【点睛】本题考查关于实数的新定义题型,理解新定义是解题的关键4、(1),1+;(2);见解析【分析】(1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;(2)先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为【详解】解:(1)正方形ABCD的面积为:,正方形ABCD的边长为:,由题意得:点表示的实数为:,故答案为:,;(2)阴影部分正方形面积为:,求其算术平方根可得:,如图所示:点表示的数即为【点睛】本题考查了割补法求面积以及
18、实数与数轴等知识,熟练掌握割补法求面积是解题的关键5、(1);(2)=;(3)相等,证明见详解【分析】(1)按照给定的运算程序,一步一步计算即可; (2)先按新定义运算,再比较大小; (3)按新定义分别运算即可说明理由【详解】解:(1);(2),=,故答案是:=;(3)相等,=【点睛】此题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果6、(1)或 ;(2)x【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x1可做一个整体求出其立方根,进而求出x的值【详解】解:(1), ,或 ;(2)8(x1)327,(x1)3,x1,x【点睛】本题考查了平方根、立方根熟练掌握
19、平方根、立方根的定义和性质是解题的关键7、5【分析】根据题意直接利用平方根以及立方根的性质得出x,y的值,进而利用算术平方根的定义得出答案【详解】解:x2的平方根是2,x24,解得:x6,x2y7的立方根是3,62y727,解得:y7,3xy25,3xy的算术平方根是5【点睛】本题主要考查平方根以及立方根的性质、算术平方根,正确得出x,y的值是解题的关键8、(1)7643是“多多数”, 4631不是“多多数”,(2)5421或6734【分析】(1)根据新定义,即可判断;(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,根据新定义,分别表示出A、F(A),根据为一个能
20、被13整除的“多多数”,且,列出关系式,进而求解(1)在7643中,7-4=3,6-3=3,7643是“多多数”,在4631中,3-3=1,6-1=5,4631不是“多多数”,(2)设A的个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,A表示的数为个位数字为x,十位数字为y,则百位数字为x+3,千位数字为y+3,解得x、y的范围为,且x、y为整数若为一个能被13整除的“多多数”, 当时,y的值可以为0、1、2、3、4、5、6,分别代入后结果是13的倍数的是同理,当时,没有符合条件的y;当时,没有符合条件的y;当时,符合条件的;当时,没有符合条件的y;当时,没有符合条件的y;综
21、上符合条件的是、当时A为5421,当时A为6734综上足条件的“多多数”为5421或6734【点睛】本题考查整式运算的应用、解不等式,是一道新定义题目,解题的关键是能够根据定义列出关系式并确定个位和十位数的取值范围,进而求解9、4,49【分析】根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.【详解】解:正数有2个平方根,它们互为相反数,解得,所以【点睛】本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.10、(1)1;(2)【分析】(1)先计算负指数幂,零指数幂,绝对值,再计算加法即可;(2)先调整符号,利用平分差公式计算,再利用完全平方公式展开计算去括号即可【详解】解:(1),=,=1;(2),=,=,=,=【点睛】本题考查实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算,掌握实数混合计算,负指数幂,零指数幂,整式乘法公式混合计算是解题关键