2022年沪教版(上海)七年级数学第二学期第十二章实数专题训练试卷(含答案详解).docx

上传人:可****阿 文档编号:30741267 上传时间:2022-08-06 格式:DOCX 页数:18 大小:251.04KB
返回 下载 相关 举报
2022年沪教版(上海)七年级数学第二学期第十二章实数专题训练试卷(含答案详解).docx_第1页
第1页 / 共18页
2022年沪教版(上海)七年级数学第二学期第十二章实数专题训练试卷(含答案详解).docx_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022年沪教版(上海)七年级数学第二学期第十二章实数专题训练试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年沪教版(上海)七年级数学第二学期第十二章实数专题训练试卷(含答案详解).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版(上海)七年级数学第二学期第十二章实数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、64的立方根为( )A2B4C8D22、下列四个数中,最小的数是( )A3BC0D3、下列各式中正确的是

2、( )ABCD4、下列各数是无理数的是( )AB3.33CD5、下列整数中,与1最接近的是( )A2B3C4D56、在以下实数:,3.1411,8,0.020020002中,无理数有()A2个B3个C4个D5个7、下列各式中,化简结果正确的是( )ABCD8、9的平方根是()A3B3C3D9、若,那么( )A1B-1C-3D-510、下列各数,其中无理数的个数有()A4个B3个C2个D1个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、立方等于-27的数是_.3、计算:_4、已知x,y为实数,且,则的值为_5、如果一个正数x的平方根是2a3和5a,那么x的值

3、是 _三、解答题(10小题,每小题5分,共计50分)1、将下列各数填入相应的横线上:整数: 有理数: 无理数: 负实数: 2、计算:3、计算(1);(2)4、已知a,b互为相反数,c,d互为倒数,x的立方等于8,求3(a+b)+cd+x的值5、求下列各式的值:(1)(2)(3)6、做一个底面积为24cm2,长、宽、高的比为4:2:1的长方体,求这个长方体的长、宽、高分别是多少cm?7、解答下列各题:(1)计算: (2)分解因式:8、已知:,求x17的算术平方根9、(1)计算:32(2021)0+|2|()2();(2)解方程:110、(1)计算:;(2)求下列各式中的x:;(x+3)327-参

4、考答案-一、单选题1、B【分析】根据立方根的定义进行计算即可【详解】解:43=64,实数64的立方根是,故选:B【点睛】本题考查立方根,理解立方根的定义是正确解答的关键2、D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可【详解】解:,最小的数是,故选D【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0负实数,两个负实数绝对值大的反而小3、D【分析】由算术平方根的含义可判断A,B,C,由立方根的含义可判断D,从而可得答案.【详解】解:故A不符合题意;故B不符合题意;没有意义,故C不符合

5、题意;,运算正确,故D符合题意;故选D【点睛】本题考查的是算术平方根的含义,立方根的含义,掌握“利用算术平方根与立方根的含义求解一个数的算术平方根与立方根”是解本题的关键.4、C【分析】无理数是指无限不循环小数,由此概念以及立方根的定义分析即可【详解】解:,是有理数,3.33和是有理数,是无理数,故选:C【点睛】本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键5、A【分析】先由无理数估算,得到,且接近3,即可得到答案【详解】解:由题意,且接近3,最接近的是整数2;故选:A【点睛】本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近36、

6、B【分析】根据“无限不循环的小数是无理数”可直接进行排除选项【详解】解:,在以下实数:,3.1411,8,0.020020002中,无理数有,0.020020002;共3个;故选B【点睛】本题主要考查算术平方根及无理数,熟练掌握求一个数的算术平方根及无理数的概念是解题的关键7、D【分析】根据实数的运算法则依次对选项化简再判断即可【详解】A、,化简结果错误,与题意不符,故错误B、,化简结果错误,与题意不符,故错误C、,化简结果错误,与题意不符,故错误D、,化简结果正确,与题意相符,故正确故选:D 【点睛】本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则8、A【分析】根据平方根的定义进

7、行判断即可【详解】解:(3)299的平方根是3故选:A【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根9、D【分析】由非负数之和为,可得且,解方程求得,代入问题得解【详解】解: , 且,解得,故选:D【点睛】本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键10、C【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:,是整数,属于有理数;是分数,属于有理数;无理数有,共2个故选:C【

8、点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数二、填空题1、3【分析】根据实数的运算法则即可求出答案【详解】解:原式【点睛】本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键2、-3【分析】根据立方根的定义解答即可【详解】解:(-3)3=-27,立方等于-27的数是-3故答案为-3【点睛】本题考查了有理数的乘方,熟悉乘方和立方根的定义是解题的关键3、1【分析】根据平方和立方根的定义分别化简,再计算算术平方根即可【详解】解:,故答案为:1【点睛】本题考查了实数的运算,解题的关键是掌握

9、算术平方根和立方根的定义4、2【分析】根据偶次幂及算术平方根的非负性可得x、y的值,然后问题可求解【详解】解:,;故答案为2【点睛】本题主要考查偶次幂及算术平方根的非负性,熟练掌握偶次幂及算术平方根的非负性是解题的关键5、49【分析】一个正数的平方根性质是互为相反数得出2a3+5a=0,解方程求出a =-2,再求平方根,利用平方根求出原数即可【详解】解:一个正数x的平方根是2a3和5a,2a3+5a=0,解得a =-2,当a =-2时2a3=-22-3=-7,x=(-7)2=49故答案为:49【点睛】本题考查一个正数x的平方根性质,一个正数有两个平方根,它们是互为相反数,0的平方根是0,负数没

10、有平方根,根据平方根性质列方程是解题关键三、解答题1、;,-3.030030003,;-3.030030003,;【分析】有理数与无理数统称实数,整数与分数统称有理数,按照无理数、有理数的定义及实数的分类标准进行分类即可.【详解】整数: 有理数: 无理数:,-3.030 030 003,;负实数:-3.030 030 003, ;【点睛】本题考查的是实数的概念与分类,掌握“实数的分类与概念”是解本题的关键.2、【分析】根据立方根,算术平方根,绝对值的计算法则求解即可【详解】解:【点睛】本题主要考查了立方根,算术平方根,绝对值,熟练掌握相关计算法则是解题的关键3、(1)1;(2)【分析】(1)计

11、算乘方,零指数幂,算术平方根,负指数幂,再计算加减法即可;(2)先立方根,零指数幂,绝对值化简,去括号合并即可【详解】解:(1),=,=1;(2),=,=【点睛】本题考查实数混合计算,零指数幂,负指数幂,算术平方根,立方根,绝对值,掌握以上知识是解题关键4、-1【分析】由题意可知,将值代入即可【详解】解:由题意得:,;解得【点睛】本题考查了相反数,倒数,立方根等知识点解题的关键在于正确理解相反数,倒数,立方根的概念与应用5、(1)6;(2);(3)【分析】利用立方与开立方互为逆运算进行化简求值【详解】解:(1)(2)(3)【点睛】本题考查了立方与立方根解题的关键在于正确计算开方、立方与开立方的

12、运算6、这个长方体的长、宽、高分别为、【分析】根据题意设这个长方体的长、宽、高分别为4x、2x、x,然后依据底面积为24cm2,列出关于x的方程,然后可求得x的值,最后再求得这个长方体的长、宽、高即可【详解】解:设这个长方体的长、宽、高分别为4x、2x、x根据题意得:4x2x24,解得:x或x(舍去)则4x4,2x2所以这个长方体的长、宽、高分别为4cm、2cm、cm【点睛】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键7、(1);(2)【分析】(1)原式利用算术平方根、立方根性质,乘方的意义,以及绝对值的代数意义计算即可得到结果;根据幂的乘方与积的乘方以及同底数幂的乘

13、法法则进行计算,再进行合并同类项合并即可;(2)原式提取公因式x,再利用完全平方公式分解即可【详解】解:(1) (2)【点睛】此题考查了实数的运算、整式的乘除运算以及提公因式法与公式法的综合运用的知识点,熟练掌运算以及相关法则、方法是解本题的关键8、3【分析】首先根据,求出x的值,然后代入x17求解算术平方根即可【详解】解:,5x328,解得:x8,x178179,9的算术平方根为3,x17的算术平方根为 3,故答案为:3【点睛】此题考查了立方根的概念,求解算数平方根,解题的关键是熟练掌握立方根和算术平方根的概念9、(1)-7;(2)x9【分析】(1)直接利用绝对值的性质、零指数幂的性质、负整

14、数指数幂的性质分别化简得出答案;(2)直接去分母,移项合并同类项解方程即可【详解】解:(1)原式91+29()91+2+17;(2)去分母得:2x3(1+x)12,去括号得:2x33x12,移项得:2x3x12+3,合并同类项得:x9,系数化1得:x9【点睛】此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键10、(1);(2);【分析】(1)利用去绝对值符号的方法,立方根定义,平方根的定义对式子进行运算即可;(2)对等式进行开平方运算,再把x的系数转化为1即可;对等式进行开立方运算,再移项即可【详解】解:(1)2(2)33;(2)3x6;(x+3)327x+33x6【点睛】本题主要考查实数的运算,立方根,平方根,解答的关键是对相应的运算法则的掌握与应用

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁