《2021-2022学年浙教版初中数学七年级下册第四章因式分解定向练习试卷.docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解定向练习试卷.docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第四章因式分解定向练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、多项式可以因式分解成,则的值是( )A.-1B.1C.-5D.52、下列各式中,能用完全平方公式分解因式的是()A.B.C.D. 3、下列由左边到右边的变形中,属于因式分解的是( )A.(a1)(a1)a21B.a26a9(a3)2C.a22a1a(a2)1D.a25aa2(1)4、下列因式分解正确的是( )A.x2-4=(x+4)(x-4)B.x2+2x+1=x(x+2)+1C.3mx-6my=3m(x
2、-6y)D.x2y-y3=y(x+y)(x-y)5、的值为( )A.B.C.D.3536、下列多项式能用公式法分解因式的是()A.m2+4mnB.m2+n2C.a2+ab+b2D.a24ab+4b27、下列各式从左边到右边的变形,是因式分解且分解正确的是 ( )A.(a+1)(a-1)=a2-1B.ab+ac+1=a(b+c)+1C. a2-2a-3=(a-1)(a-3)D.a2-8a+16=(a-4)28、下列等式从左到右的变形,属于因式分解的是()A.m (a+b)ma+mbB.x2+2x+1x(x+2)+1C.x2+xx2(1+)D.x29(x+3)(x3)9、把多项式x39x分解因式,
3、正确的结果是( )A.x(x29)B.x(x3)(x3)C.x(x3)2D.x(3x)(3x)10、将边长为m的三个正方形纸片按如图1所示摆放并构造成边长为n的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m和n的长方形时,所得长方形的面积为35.则图2中长方形的周长是()A.24B.26C.28D.3011、下列分解因式的变形中,正确的是( )A.xy(xy)x(yx)x(yx)(y1)B.6(ab)22(ab)(2ab)(3ab1)C.3(nm)22(mn)(nm)(3n3m2)D.3a(ab)2(ab)(ab)2(2ab)12、
4、把多项式a39a分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(a+3)(a3)13、已知,则 的值是( )A.B.C.45D.7214、下列等式中,从左往右的变形为因式分解的是()A.a2a1a(a1)B.(ab)(a+b)a2b2C.m2m1m(m1)1D.m(ab)+n(ba)(mn)(ab)15、下列各式能用平方差公式分解因式的是( )A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、因式分解:=_2、将分解因式_3、因式分解: _4、10029929829729629522212_5、分解因式:_;6、若多项式可分解因式,则_,
5、_7、分解因式:x27xy18y2_8、多项式各项的公因式是_9、因式分解:_10、若,则_三、解答题(3小题,每小题5分,共计15分)1、因式分解:(1)x316x;(2)2x3y+4x2y22xy32、把下列多项式因式分解:(1)n2(n1)n(1n);(2)4x34x;(3)16x48x2y2+y4;(4)(x1)2+2(x5)3、阅读以下文字并解决问题:对于形如这样的二次三项式,我们可以直接用公式法把它分解成的形式,但对于二次三项式,就不能直接用公式法分解了此时,我们可以在中间先加上一项9,使它与的和构成一个完全平方式,然后再减去9,则整个多项式的值不变即:,像这样,把一个二次三项式变
6、成含有完全平方式的形式的方法,叫做配方法(1)利用“配方法”因式分解:(2)如果,求的值-参考答案-一、单选题1、D【分析】先提公因式,然后将原多项式因式分解,可求出和 的值,即可计算求得答案.【详解】解:,.故选:.【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.2、D【分析】根据完全平方公式法分解因式,即可求解.【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解
7、因式,熟练掌握 是解题的关键.3、B【分析】根据因式分解的定义逐个判断即可.【详解】解:A.由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.由左边到右边的变形属于因式分解,故本选项符合题意;C.由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式的右边不是整式的积的形式,即由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4、D【分析】根据提公因式法、公式法逐项进行因式分解,再进行判断即可.【详解】解:A.x2-4=(x+2
8、)(x-2),因此选项A不符合题意;B.x2+2x+1=(x+1)2,因此选项B不符合题意;C.3mx-6my=3m(x-2y),因此选项C不符合题意;D.x2y-y3=y(x2-y2)=y(x+y)(x-y),因此选项D符合题意;故选:D.【点睛】本题考查提公因式法、公式法分解因式,掌握a2-b2=(a+b)(a-b),a22ab+b2=(ab)2是正确应用的前提.5、D【分析】观察式子中有4次方与4的和,将因式分解,再根据因式分解的结果代入式子即可求解【详解】原式故答案为:【点睛】本题考查了因式分解的应用,找到是解题的关键.6、D【分析】利用平方差公式,以及完全平方公式判断即可.【详解】解
9、:A、原式m(m+4n),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式(a2b)2,符合题意.故选:D.【点睛】此题考查了因式分解运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.7、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】解:A、是多项式乘法,不是因式分解,原变形错误,故此选项不符合题意;B、右边不是整式的积的形式,不是因式分解,原变形错误,故此选项不符合题意;C、a2-2a-3=(a+1)(a-3)分解时出现符号错误,原变形错误,故此选项不符合题意;D、符
10、合因式分解的定义,是因式分解,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了因式分解.解题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.8、D【分析】根据因式分解的定义是把一个多项式化为几个整式的积的形式的变形,可得答案.【详解】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、因为的分母中含有字母,不是整式,所以没把一个多项式化为几个整式的积的形式,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,故此选项符合题意;故选
11、:D.【点睛】本题主要考查了因式分解的定义,熟练掌握因式分解是把一个多项式化为几个整式的积的形式的变形是解题的关键.9、B【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:x39xx(x29)x(x3)(x3).故选:B.【点睛】本题考查了提公因式和公式法分解因式,熟练掌握平方差公式是解题的关键.10、A【分析】由题意:按如图1所示摆放并构造成边长为n的大正方形时,三个小正方形的重叠部分是两个边长均为1的正方形;将其按如图2所示摆放并构造成一个邻边长分别为3m和n的长方形时,所得长方形的面积为35,列出方程组,求出3m=7,n=5,即可解决问题.【详解】依题意,由图1可得,由图2可
12、得,即解得或者(舍)时,则图2中长方形的周长是.故选A.【点睛】本题考查了利用因式分解解方程,找准等量关系,列出方程是解题的关键.11、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A、xy(x-y)-x(y-x)=-x(y-x)(y+1),故本选项正确;B、6(a+b)2-2(a+b)=2(a+b)(3a+3b-1),故本选项错误;C、3(n-m)2+2(m-n)=(n-m)(3n-3m-2),故本选项错误;D、3a(a+b)2-(a+b)=(a+b)(3a2+3ab-1),故本选项错误.故选:A.【点睛】本题考查提公因式法
13、分解因式.准确确定公因式是求解的关键.12、D【分析】先用提公因式法,再用平方差公式即可完成.【详解】a39aa(a29)a(a+3)(a3).故选:D.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.13、D【分析】直接利用完全平方公式:a22ab+b2(ab)2,得出a,b的值,进而得出答案.【详解】解:x22ax+b(x3)2x26x+9,2a6,b9,解得:a3,故b2a2923272.故选:D.【点睛】此题主要考查了公式法分解因式,正确记忆完全平方公式是解题关键.14、D【分析】把一个多项
14、式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2a1a(a1)从左往右的变形是乘积形式,但(a1)不是整式,故选项A不是因式分解;B. (ab)(a+b)a2b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2m1m(m1)1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(ab)+n(ba)(mn)(ab)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.15、D【分
15、析】根据平方差公式逐个判断即可.【详解】解:A.是m和n的平方和,不是m和n的平方差,不能用平方差公式分解因式,故本选项不符合题意;B.是2x和y的平方和,不是2x和y的平方差,不能用平方差公式分解因式,故本选项不符合题意;C.是2a和b的平方和的相反数,不能用平方差公式分解因式,故本选项不符合题意;D.,能用平方差公式分解因式,故本选项符合题意;故选:D.【点睛】本题考查了平方差公式分解因式,能熟记公式a2-b2=(a+b)(a-b)是解此题的关键.二、填空题1、【分析】根据完全平方公式分解即可.【详解】解: =,故答案为:.【点睛】本题考查了用公式法进行因式分解,解题关键是熟练运用完全平方
16、公式进行因式分解.2、【分析】原式利用平方差公式分解即可.【详解】解:=故答案为:.【点睛】此题考查了因式分解,熟练掌握平方差公式是解本题的关键.3、【分析】利用提公因式法分解即可.【详解】解:故答案为:【点睛】此题考查了因式分解-提公因式法,熟练掌握因式分解的方法是解本题的关键.4、5050【分析】先根据平方差公式进行因式分解,再计算加法,即可求解.【详解】解: 1002-992 + 982-972 + 962-952 +22-12=(100 + 99)(100-99)+(98 + 97)(98-97)+(2+1)(2-1)= 100+ 99+98+ 97+2+1 = 5050.故答案为:5
17、050【点睛】本题主要考查了平方差公式的应用,熟练掌握平方差公式 的特征是解题的关键.5、【分析】直接提取公因式即可得解.【详解】解:=.故答案为:.【点睛】此题主要考查了因式分解,熟练运用提公因式,找出公因式是解答此题的关键.6、64 9 【分析】利用平方差公式可得,进而可得答案.【详解】解:多项式可分解因式,m=64,n=9.故答案为:64,9.【点睛】此题主要考查了因式分解,关键是掌握平方差公式:a2-b2=(a+b)(a-b).7、【分析】根据十字相乘法因式分解即可.【详解】x27xy18y2,故答案为:.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.8、4xy【分析】根
18、据公因式的定义,找出系数的最大公约数,相同字母的最低指数次幂,然后即可确定公因式.【详解】解:多项式系数的最大公约数是4,相同字母的最低指数次幂是x和y,该多项式的公因式为4xy,故答案为:4xy.【点睛】本题考查多项式的公因式,掌握多项式每项公因式的求法是解题的关键.9、【分析】先将原式变形为,再利用提公因式法分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了提公因式法分解因式,熟练掌握因式分解的方法是解决本题的关键.10、2022【分析】根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.【详解】故填“2022”.【点睛】本题主要考查了因式分解,善于运用因式分解的
19、方法达到降次的目的,渗透整体代入的思想是解决本题的关键.三、解答题1、(1)x(x+4)(x4);(2)2xy(xy)2.【分析】(1)先提公因式,再利用平方差公式;(2)先提公因式,再利用完全平方公式.【详解】解:(1)原式x(x216)x(x+4)(x4);(2)原式2xy(x22xy+y2)2xy(xy)2.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.2、(1)n(n1) (n+1);(2)4x (x1) (x+1);(3)(2x- y) 2 (2x+ y) 2;(4)(x3) (x+3).【分析】(1)提公因式即可;(2)先提取公因式,再用平方差公式分解即
20、可;(3)先用完全平方公式分解,再用平方差公式分解即可;(4)先去括号,合并同类项,再用平方差公式分解即可.【详解】解:(1)n2(n1)n(1n)= n(n1) (n+1);(2)4x34x=4x ( x21)= 4x (x1) (x+1);(3)16x48x2y2+y4=(4 x2- y2) 2=(2x- y) 2 (2x+ y) 2;(4)(x1)2+2(x5)= x22x+1+2x -10= x29=(x3) (x+3).【点睛】本题考查了多项式的因式分解,解题关键是熟记因式分解的步骤和公式,并熟练运用,注意:因式分解要彻底.3、(1);(2)【分析】(1)将前两项配方后即可得到,然后利用平方差公式因式分解即可;(2)由,可得,求得a、b、c后即可得出答案.【详解】解:(1)(2),【点睛】本题考查了因式分解的知识,解题的关键是能够熟记完全平方公式及平方差公式的形式,并能正确的分组.