《2022年最新人教版九年级数学下册第二十八章-锐角三角函数同步练习练习题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版九年级数学下册第二十八章-锐角三角函数同步练习练习题(名师精选).docx(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一矩形纸片ABCD沿CE折叠,B点恰好落在AD边上的F处,若,则的值为( )ABCD2、如图,ACB6
2、0,半径为1的O切BC于点C,若将O在直线CB上沿某一方向滚动,当滚动到O与CA也相切时,圆心O移动的水平距离为( )ABC 或D或3、如图,在网格中,小正方形的边长均为1,点A、B、C都在格点上,则的正弦值是( )A2BCD4、如图,ABC中,ABAC2,B30,ABC绕点A逆时针旋转(0120)得到ABC,BC与BC、AC分别交于点D、点E,设CD+DEx,AEC的面积为y,则y与x的函数图象大致为()A BC D5、在正方形网格中,ABC在网格中的位置如图,则sinB的值为()ABCD6、如图,在ABC中,C=90,BC=5,AC=12,则tanB等于( )ABCD7、如图,点为边上的任
3、意一点,作于点,于点,下列用线段比表示的值,正确的是( )ABCD8、在ABC中,ACB90,AC1,BC2,则sinB的值为()ABCD9、小金将一块正方形纸板按图1方式裁剪,去掉4号小正方形,拼成图2所示的矩形,若已知AB9,BC16,则3号图形周长为()A B C D10、如图,若的半径为R,则它的外切正六边形的边长为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在正方形ABCD中,AB2,点E是BC边的中点,连接DE,延长EC至点F,使得EFDE,过点F作FGDE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的是_tanGFBMN
4、NC;S四边形GBEM2、_3、计算:_4、在矩形ABCD中,BC3AB,点P在直线BC上,且PCAB,则APB的正切值为 _5、如图,矩形ABCD中,AB4,AEAD,将ABE沿BE折叠后得到GBE,延长BG交CD于F点,若F为CD中点,则BC的长为 _三、解答题(5小题,每小题10分,共计50分)1、将抛物线,与x轴交于点A(-1,0)和点B(3,0),与y轴交于点C,顶点为D(1)求抛物线的表达式和点D的坐标;(2)ACB与ABD是否相等?请证明你的结论;(3)点P在抛物线的对称轴上,且CDP与ABC相似,求点P的坐标2、如图, 在 中, 点 分别在 边和 边上,沿着直线 翻折 ,点 落
5、在 边上,记为点 ,如果 ,则 _3、计算下列各式:(1)sin604cos230+sin45tan60;(2)4、已知直线m与O,AB是O的直径,ADm于点D(1)如图,当直线m与O相交于点E、F时,求证:DAE=BAF (2)如图,当直线m与O相切于点C时,若DAC=35,求BAC的大小;(3)若PC2,PB2,求阴影部分的面积(结果保留)5、在平面直角坐标系中,抛物线与轴交于点、点,与轴交于点,点在第三象限的抛物线上,直线经过点、点,点的横坐标为(1)如图1,求抛物线的解析式;(2)如图2,直线交轴于点,过点作轴,交轴于点,交抛物线于点,过点作,交直线于点,求线段的长;(3)在(2)的条
6、件下,点在上,直线交于点,点在第二象限,连接交于点,连接,点在的延长线上,点在直线上,且点的横坐标为5,连接,求点的纵坐标 -参考答案-一、单选题1、D【分析】由AFECFD90得,根据折叠的定义可以得到CBCF,则,即可求出的值,继而可得出答案【详解】AFECFD90,由折叠可知,CBCF,矩形ABCD中,ABCD,故选:D【点睛】本题考查了折叠变换的性质及锐角三角函数的定义,解题关键是得到CBCF2、D【分析】当圆O滚动到圆W位置与CA,CB相切,切点分别为E,F,连接WE,WF,CW,OC,OW,则四边形OCFW是矩形,然后根据锐角三角函数的知识求解;同理求出另一种情况的值【详解】解:如
7、图1,当圆O滚动到圆W位置与CA,CB相切,切点分别为E,F,连接WE,WF,CW,OC,OW,则四边形OCFW是矩形,OW=CF,WF=1,ACB60,WCF=ACB=30,所以点O移动的距离为OW=CF=如图2,当圆O滚动到圆O位置与CA,CB相切,切点分别为F,E,连接OO,OE,OC,OF,OC,则四边形OCEO是矩形,OO=CE,ACB60,ACE120,OCE=60,点O移动的距离为OO=CE=,故选:D【点睛】此题考查了切线的性质与切线长定理,矩形的判定与性质,以及三角函数等知识解此题的关键是根据题意作出图形,注意数形结合思想的应用3、C【分析】根据网格的特点,勾股定理求得的长,
8、进而根据勾股定理逆定理判定是直角三角形,进而根据正弦的定义求解即可【详解】解:是直角三角形,且是斜边故选C【点睛】本题考查了网格中勾股定理与勾股定理的逆定理的应用,正弦的定义,证明是直角三角形是解题的关键4、B【分析】先证ABFACE(ASA),再证BFDCED(AAS),得出DE+DC=DE+DB=BE=x,利用锐角三角函数求出,AG=ACsin30=1,根据三角形面积列出函数解析式是一次函数,即可得出结论【详解】解:设BC与AB交于F,ABC绕点A逆时针旋转(0120)得到ABC,BAF=CAE=,AB=AC=AB=AC,B=C=B=C=30,在ABF和ACE中,ABFACE(ASA),A
9、F=AE,AB=AC,BF=AB-AF=AC-AE=CE,在BFD和CED中,BFDCED(AAS),BD=CD,FD=ED,DE+DC=DE+DB=BE=x,过点A作AGBC于G,AB=AC,BG=CG,AC=2,cosC=,AG=ACsin30=1EC=是一次函数,当x=0时,故选择B【点睛】本题考查等腰三角形性质,图形旋转,三角形全等判定与性质,解直角三角形,三角形面积,列一次函数解析式,识别函数图像,本题综合性强,难度大,掌握以上知识是解题关键5、A【分析】利用勾股定理先求出AB的长度,最后利用正弦值的定义得到,进而得到最终答案【详解】解:如图所示在中,由勾股定理可得: 故选:A【点睛
10、】本题主要是考察了勾股定理和锐角三角函数的定义,掌握锐角三角函数的定义是解题的关键6、B【分析】根据锐角三角函数求解即可【详解】解:在RtABC中,C90,BC5,AC12,所以tanB,故选:B【点睛】本题考查锐角三角函数,掌握正切的定义:正切是指是直角三角形中,某一锐角的对边与另一相邻直角边的比,是正确解答的关键7、C【分析】根据正弦值等于对边与斜边的比,可得结论【详解】解:在中,;在中,故选:【点睛】本题考查了解直角三角形,掌握直角三角形的边角间关系是解决本题的关键8、A【分析】先根据勾股定理求出斜边AB的值,再利用正弦函数的定义计算即可【详解】解:在ABC中,ACB=90,AC=1,B
11、C=2,AB=,sinB=,故选:A【点睛】本题考查了锐角三角函数的定义,勾股定理解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数的定义9、B【分析】设 而AB9,BC16,如图,由(图1)是正方形,(图2)是矩形,4号图形为小正方形,得到 再证明再建立方程求解,延长交于 则 再利用勾股定理求解 从而可得答案.【详解】解:如图,由题意得:(图1)是正方形,(图2)是矩形,4号图形为小正方形, 设 而AB9,BC16, 结合(图1),(图2)的关联信息可得: 整理得: 解得: 经检验:不符合题意,取 延长交于 则 四边形是矩形, 所以3号图形的周长为: 故选B【点睛】本题考查的
12、是矩形的判定与性质,正方形的性质,锐角三角函数的应用,一元二次方程的应用,从(图形1)与(图形2)中的关联信息中得出图形中边的相等是解本题的关键.10、B【分析】如图连结OA,OB,OG,根据六边形ABCDEF为圆外切正六边形,得出AOB=60AOB为等边三角形,根据点G为切点,可得OGAB,可得OG平分AOB,得出AOC=,根据锐角三角函数求解即可【详解】解:如图连结OA,OB,OG,六边形ABCDEF为圆外切正六边形,AOB=3606=60,AOB为等边三角形,点G为切点,OGAB,OG平分AOB,AOC=,cos30=,故选择B【点睛】本题考查圆与外切正六边形性质,等边三角形性质,锐角三
13、角形函数,掌握圆与外切正六边形性质,等边三角形性质,锐角三角形函数是解题关键二、填空题1、【解析】【分析】证明,由可得;结合,证明;证明,得;求出和的面积,进而由它们的差可得【详解】解:,故正确,由可得:,故正确,故不正确,故正确,故答案是:【点睛】本题考查了正方形性质,全等三角形判定和性质,相似三角形判定和性质等知识,解题的关键是层层递进,下一问要有意识应用前面解析2、5【解析】【分析】原式分别根据绝对值,有理数的乘方,二次根式以及特殊角三角函数值化简各项后,再进行加减运算即可得到答案【详解】解:=5【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则及特殊角三角函数值是解答本题的关键3、
14、【解析】【分析】根据特殊的三角函数值解答即可【详解】解:,故答案为:【点睛】本题考查了特殊的三角函数值,熟记特殊的三角函数值是解题是关键4、或14#14或【解析】【分析】由题意可知当P在AB上时,P是AB的中点,即AB=BP;当P在AB延长线上时,BP=3AB,在直角三角形中由正切公式求出即可【详解】解:(1)如图1所示,BC=3AB,PC=AB,BP=2PC,又四边形ABCD是矩形,tanAPB=ABBP=12;(2)如图2所示,BC=3ABPC=AB,BP=4AB,tanAPB=ABBP=14综上所述APB的正切值为或14故答案为:或14【点睛】本题主要考查矩形性质和三角函数的定义,注意分
15、类讨论思想的运用,解题的关键是分两种情况求出AB与BP的关系5、4【解析】【分析】延长BF交AD的延长线于点H,证明BCFHDF(AAS),由全等三角形的性质得出BC=DH,由折叠的性质得出A=BGE=90,AE=EG,设AE=EG=x,则AD=BC=DH=3x,得出EH=5x,由锐角三角函数的定义及勾股定理可得出答案【详解】解:延长BF交AD的延长线于点H,四边形ABCD是矩形,AD=BC,ADBC,A=BCF=90,H=CBF,在BCF和HDF中,BCFHDF(AAS),BC=DH,将ABE沿BE折叠后得到GBE,A=BGE=90,AE=EG,EGH=90,AE=AD,设AE=EG=x,则
16、AD=BC=DH=3x,ED=2x,EH=ED+DH=5x,在RtEGH中,sinH=,sinCBF=,AB=CD=4,F为CD中点,CF=2,BF=10,经检验,符合题意,BC=4,故答案为:4【点睛】本题考查了矩形的性质,折叠的性质,全等三角形的判定与性质,解直角三角形,勾股定理,熟练掌握折叠的性质是解题的关键三、解答题1、(1),;(2)相等,理由见解析;(3),【解析】【分析】(1)根据抛物线与轴交于点和点,将点和点代入,求出即可,再化为顶点式;(2)先由、两点的坐标,得出,再根据勾股定理的逆定理判断是直角三角形,且,则由正切函数的定义求出,在中,由正切函数的定义也求出,得出,则,即;
17、(3)设点的坐标为,先由相似三角形的形状相同,得出是锐角三角形,则,再根据,得到与是对应点,所以分两种情况进行讨论:;根据相似三角形对应边的比相等列出关于的方程,解方程即可【详解】解:(1)将点和点代入,解得:,顶点的坐标为;(2)与相等,理由如下:如图,点时,即点坐标为,又,在中,在中,即; (3)点在平移后的抛物线的对称轴上,而的对称轴为,可设点的坐标为是锐角三角形,当与相似时,也是锐角三角形,即点只能在点的下方,又,与是对应点,分两种情况:如果,那么,即,解得,点的坐标为;如果,那么,即,解得,点的坐标为综上可知点的坐标为或【点睛】本题是二次函数的综合题型,其中涉及到的知识点有求抛物线的
18、解析式,对称轴、顶点坐标的求法,勾股定理及其逆定理,锐角三角函数的定义,相似三角形的判定与性质,综合性较强,难度适中解题的关键是注意两个三角形相似没有明确对应顶点时要注意分析题意分情况讨论结果2、#【解析】【分析】过点作于点,设,则,解直角三角形即可求得,即的值【详解】解:如图,过点作于点在 中,是等腰直角三角形=设,则,沿着直线翻折,点落在边上,记为点,在中,即解得故答案为:【点睛】本题考查了勾股定理,轴对称的性质,解直角三角形,根据题意构造直角三角形是解题的关键3、(1)(2)【解析】【分析】(1)根据特殊角的三角函数值化简,故可求解;(2)根据特殊角的三角函数值化简,故可求解【详解】(1
19、)sin604cos230+sin45tan60=4+=(2)=【点睛】此题主要考查实数的运算,解题的关键是熟知特殊角的三角函数值、二次根式的运算即完全平方公式的运算4、(1)见解析;(2);(3)【解析】【分析】(1)通过已知条件可知,再通过同角的补交相等证得,即可得到答案;(2)利用,得,再通过OA=OC,得;(3)现在中,利用勾股定理求得半径r=2,再通过,得,即可求得,那么,即可求解【详解】解:(1)如图,连接BFADmAB是O的直径,DAE=BAF(2)连接OC直线m与O相切于点CADmOA=OC(3)连接OC直线m与O相切于点C设半径OC=OB=r在中,则:解得:r=2,即OC=r
20、=2【点睛】本题考查了圆切线、内接四边形的性质,以及解直角三角形的应用,扇形面积求法,解答此题的关键是掌握圆的性质5、(1)抛物线的解析式为:;(2);(3)点N的纵坐标为5【解析】【分析】(1)根据题意可得一次函数图象经过A、D两点,所以当及当时,可确定A、D两点坐标,然后代入抛物线解析式求解即可确定;(2)根据题意当时,代入抛物线解析式确定点P的坐标,求得,然后求出直线与y轴的交点T,利用勾股定理确定,由平行可得三角形相似,利用相似三角形的性质即可得出结果;(3)过点P作轴,且,即,利用相似三角形的性质可确定,求出直线GF的函数解析式,过点M作轴,设且,可求得MF的长度,设直线MP的函数解
21、析式为:,将点,代入即可确定点的坐标,求出,根据题意即可确定点,设点R、点N在如图所示位置:过点N作轴,过点M作,过点R作,利用相似三角形及勾股定理即可得出结果【详解】解:(1)经过A、D两点,当时,解得,当时,将A、D两点代入抛物线解析式可得:,解得:,抛物线的解析式为:;(2)当时,解得:,直线解析式,当时,在中,轴,轴,即;(3)如图所示:过点P作轴,且,即,设直线GF的函数解析式为:,可得:,解得:,直线GF的函数解析式为:,过点M作轴,设且,即,设直线MP的函数解析式为:,将点,代入可得:可得:,解得:,点,解得:,点,设点R、点N在如图所示位置:过点N作轴,过点M作,过点R作,设,则,代入化简可得:,联立求解可得:,点N的纵坐标为5【点睛】题目主要考查一次函数与二次函数的综合问题,包括待定系数法确定函数解析式,相似三角形的判定和性质,勾股定理,锐角三角函数解直角三角形等,理解题意,作出相应辅助线是解题关键