《精品解析2022年最新人教版九年级数学下册第二十八章-锐角三角函数综合练习练习题.docx》由会员分享,可在线阅读,更多相关《精品解析2022年最新人教版九年级数学下册第二十八章-锐角三角函数综合练习练习题.docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知正三角形外接圆半径为,这个正三角形的边长是( )ABCD2、如图,在矩形ABCD中,对角线AC,BD
2、相交于点O,AB6,DAC60,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:BDEEFC;EDEC;ADFECF;点E运动的路程是2,其中正确结论的序号为()ABCD3、如图,AB是河堤横断面的迎水坡,堤高AC,水平距离BC1,则斜坡AB的坡度为()ABC30D604、如图1所示,DEF中,DEF90,D30,B是斜边DF上一动点,过B作ABDF于B,交边DE(或边EF)于点A,设BDx,ABD的面积为y,图2是y与x之间函数的图象,则ABD面积的最大值为( )A8B16C24D485、在中,C=90,A、B、C的对边分别为、
3、,则下列式子一定成立的是( )ABCD6、如图,过点O、A(1,0)、B(0,)作M,D为M上不同于点O、A的点,则ODA的度数为()A60B60或120C30D30或1507、如图,E是正方形ABCD边AB的中点,连接CE,过点B作BHCE于F,交AC于G,交AD于H,下列说法:;点F是GB的中点;SAHG=SABC其中正确的结论的序号是( )ABCD8、如图,在边长为2的正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将BCF沿BF对折,得到BPF,延长FP交BA延长线于点Q下列结论错误的是()AAEBFBQBQFCcosBQPDS四边形ECFGSBGE9、小金将一
4、块正方形纸板按图1方式裁剪,去掉4号小正方形,拼成图2所示的矩形,若已知AB9,BC16,则3号图形周长为()A B C D10、在科学小实验中,一个边长为30cm正方体小木块沿着一个斜面下滑,其轴截面如图所示初始状态,正方形的一个顶点与斜坡上的点P重合,点P的高度PF40cm,离斜坡底端的水平距离EF80cm正方形下滑后,点B的对应点与初始状态的顶点A的高度相同,则正方形下滑的距离(即的长度)是()cmA40 B60 C30 D40第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,AB为半圆O的直径,点C为半圆上的一点,CDAB于点D,若AB=10,CD=4,则s
5、inBCD的值为_2、如图,中,D为边上一动点(不与B,C重合),和的垂直平分线交于点E,连接、和、与的交点记为点F下列说法中,;当时,正确的是_(填所有正确选项的序号)3、若x为锐角,且cos(x20),则x_4、在矩形ABCD中,BC3AB,点P在直线BC上,且PCAB,则APB的正切值为 _5、图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点E,则tanAEP_三、解答题(5小题,每小题10分,共计50分)1、如图,上午9时,一条船从A处出发,以每小时40海里的速度向正东方向航行,9时30分到达B处,从A、B两处分别测得小岛C在北偏东和
6、北偏东方向上,已知小岛C周围方圆30海里的海域内有暗礁该船若继续向东方向航行,有触礁的危险吗?并说明理由2、计算(1) (2)4x28x103、如图,内接于,交于点,垂足为点,连接, (1)求的度数;(2)过点作,垂足分别为点,连接OA,OC,OB,EH,FH,若的半径为1,求的值4、计算:sin260+|tan45|2cos455、如图, 在 中, 点 分别在 边和 边上,沿着直线 翻折 ,点 落在 边上,记为点 ,如果 ,则 _-参考答案-一、单选题1、B【分析】如图, 为正三角形ABC的外接圆,过点O作ODAB于点D,连接OA, 再由等边三角形的性质,可得OAB=30,然后根据锐角三角函
7、数,即可求解【详解】解:如图, 为正三角形ABC的外接圆,过点O作ODAB于点D,连接OA, 根据题意得:OA= ,OAB=30,在中, ,AB=3,即这个正三角形的边长是3故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键2、D【分析】根据DAC60,ODOA,得出OAD为等边三角形,再由DFE为等边三角形,得EDFEFDDEF60,即可得出结论正确;如图,连接OE,利用SAS证明DAFDOE,再证明ODEOCE,即可得出结论正确;通过等量代换即可得出结论正确;如图,延长OE至E,使OEOD,连接DE,通过DAFDOE,DOE60
8、,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,从而得出结论正确;【详解】解:DAC60,ODOA,OAD为等边三角形,DOADAOODA60,ADOD,DFE为等边三角形,EDFEFDDEF60,DFDE,BDE+FDOADF+FDO60,BDEADF,ADF+AFD+DAF180,ADF+AFD180DAF120,EFC+AFD+DFE180,EFC+AFD180DFE120,ADFEFC,BDEEFC,故结论正确;如图,连接OE,由得ADOD,DFDE,ODA60,EDF60,ADFODE,在DAF和DOE中,DAFDOE(SAS),DOEDAF60,COD
9、180AOD120,COECODDOE1206060,COEDOE,在ODE和OCE中,ODEOCE(SAS),EDEC,OCEODE,故结论正确; 由得ODEADF,OCEODE,ADFOCE,即ADFECF,故结论正确;如图,延长OE至E,使OEOD,连接DE,DAFDOE,DOE60,点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,OEODADABtanABD6tan302,点E运动的路程是2,故结论正确;故选:D【点睛】本题主要考查了矩形性质,等边三角形判定和性质,全等三角形判定和性质,等腰三角形的判定和性质,点的运动轨迹等,解题的关键是熟练掌握全等三角形判定和性质、
10、等边三角形判定和性质等相关知识3、A【分析】直接利用坡度的定义得出,斜坡AB的坡度为:,进而得出答案【详解】解:由题意可得:ACB90,则斜坡AB的坡度为:,故选:A【点睛】此题主要考查了解直角三角形的应用,正确掌握坡度的定义是解题关键4、C【分析】由图得点A到达点E时,面积最大,此时,由三角函数算出AB,由三角形面积公式即可求解【详解】由图可得:点A到达点E时,面积最大,此时,故选:C【点睛】本题考查二次函数图像问题以及解直角三角形,由题判断点A运动到哪里能使面积最大是解题的关键5、B【分析】根据题意,画出直角三角形,再根据锐角三角函数的定义对选项逐个判断即可【详解】解:由题意可得,如下图:
11、,则,A选项错误,不符合题意;,则,B选项正确,符合题意;,则,C选项错误,不符合题意;,则,D选项错误,不符合题意;故选B,【点睛】此题考查了锐角三角函数的定义,解题的关键是画出图形,根据锐角三角函数的定义进行求解6、D【分析】连接,先利用正切三角函数可得,再分点在轴上方的圆弧上和点在轴下方的圆弧上两种情况,分别利用圆周角定理、圆内接四边形的性质求解即可得【详解】解:如图,连接,在中,由题意,分以下两种情况:(1)如图,当点在轴上方的圆弧上时,由圆周角定理得:;(2)如图,当点在轴下方的圆弧上时,由圆内接四边形的性质得:;综上,的度数为或,故选:D【点睛】本题考查了正切、圆周角定理、圆内接四
12、边形的性质等知识点,正确分两种情况讨论是解题关键7、D【分析】先证明ABHBCE,得AH=BE,则,即,再根据平行线分线段成比例定理得:即可判断;设BF=x,CF=2x,则BC=x,计算FG= 即可判断;根据等腰直角三角形得:AC=AB,根据中得:即可判断;根据,可得同高三角形面积的比,然后判断即可【详解】解:四边形ABCD是正方形,AB=BC,HAB=ABC=90,CEBH,BFC=BCF+CBF=CBF+ABH=90,BCF=ABH,ABHBCE,AH=BE,E是正方形ABCD边AB的中点,BE=AB,即AH/BC,故正确;设BF=x,CF=2x,则BC=x,AH=x,故不正确;四边形AB
13、CD是正方形,AB=BC,ABC=90,AC=AB,故正确;,故正确故选D【点睛】本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识点,灵活应用相关知识点成为解答本题的关键8、C【分析】BCF沿BF对折,得到BPF,利用角的关系求出QF=QB,即可判断B;首先证明ABEBCF,再利用角的关系求得BGE=90,即可得到AEBF即可判断A;利用QF=QB,解出BP,QB,根据正弦的定义即可求解即可判断C;可证BGE与BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解即可判断D【详解】解:四边形ABCD是正方形,C=90,ABCD,由折叠的性质得:FPFC
14、,PFBBFC,FPB=C90,CDAB,CFBABF,ABFPFB,QFQB,故B选项不符合题意;E,F分别是正方形ABCD边BC,CD的中点,CD=BC,ABE=C=90,CFBE,在ABE和BCF中, ,ABEBCF(SAS),BAECBF,又BAE+BEA90,CBF+BEA90,BGE90,AEBF,故A选项不符合题意;令PFk(k0),则PB2k,在RtBPQ中,设QBx,x2(xk)2+4k2,x,cosBQP,故C选项符合题意;BGEBCF,GBECBF,BGEBCF,BEBC,BFBC,BE:BF1:,BGE的面积:BCF的面积1:5,S四边形ECFG4SBGE,故D选项不符
15、合题意故选C【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解9、B【分析】设 而AB9,BC16,如图,由(图1)是正方形,(图2)是矩形,4号图形为小正方形,得到 再证明再建立方程求解,延长交于 则 再利用勾股定理求解 从而可得答案.【详解】解:如图,由题意得:(图1)是正方形,(图2)是矩形,4号图形为小正方形, 设 而AB9,BC16, 结合(图1),(图2)的关联信息可得: 整理得: 解得: 经检验:不符合题意,取 延长交于 则 四边形是矩形, 所以3号图形的周长为: 故选B【点睛】本
16、题考查的是矩形的判定与性质,正方形的性质,锐角三角函数的应用,一元二次方程的应用,从(图形1)与(图形2)中的关联信息中得出图形中边的相等是解本题的关键.10、B【分析】根据题意可得:A与高度相同,连接,可得,利用平行线的性质可得:,根据正切函数的性质计算即可得【详解】解:根据题意可得:A与高度相同,如图所示,连接,故选:B【点睛】题目主要考查平行线的性质及锐角三角函数解三角形,熟练掌握锐角三角函数的性质是解题关键二、填空题1、【解析】【分析】如图,连接OC,由AB是直径可得OC=OB=5,利用勾股定理可求出OD的长,即可得出BD的长,利用勾股定理可求出BC的长,根据正弦的定义即可得答案【详解
17、】如图,连接OC,AB为半圆O的直径,AB=10,OC=OB=5,CDAB于点D,CD=4,OD=3,BC=,sinBCD=故答案为:【点睛】本题考查圆的性质、勾股定理及三角函数的定义,在直角三角形中,锐角的正弦是角的对边与斜边的比值;余弦是邻边与斜边的比值;正切是对边与邻边的比值;熟练掌握三角函数的定义是解题关键2、【解析】【分析】先证AED=90,再利用2+DAB=3+DAB=45,得出2=3可判断;利用EAF和3的余弦值相等判断;利用ACDAEF及勾股定理可判断;设BM=a,用含a的式子表示出ED2和AB2即可判断【详解】AC=BC,C=90,3+DAB=CAB=ABC=45,和的垂直平
18、分线交于点E,AE=ED=BE,1=2,1+CBA=EDBCAB+2=1+CBA,EDB=CAE,EDB+CDE=180,CAE+CDE=180,CAE+C+CDE+AED=360,C+AED=90,C=90,AED=90,AE=ED,2+DAB=3+DAB=45,2=3,ACDAEF,故正确;AED为等腰直角三角形,AD=2AE=ED,cosEAF=cos3=ACAD=AC2ED,故正确;ACDAEF,ACAD=AEAF,在RtAED中,AE=AD,ACAD=22ADAF,22AD2=ACAF,AD2=2ACAF,故错误;BEAD,BFAF=BEAD=AEAD=AE2AE=12,BFAB=1
19、2+1,SDFBSABD=12+1=2-1,BEAD,DAB=1,2+1=1+DAB=45,过点B作BMAE交AE的延长线于点M,MEB=2+1=45,EM=BM,设BM=a,则EM=a,BE=a,AE=a,AB2=AM2+BM2=(2a+a)2+a2=4a2+22a2,ED2=BE2=(2a)2=2a2,ED2AB2=2a24a2+22a2=12+2,SDFBSABD=BFAB=2-1,故错误故答案为:【点睛】本题考查了线段垂直平分线的性质,相似三角形的判定与性质,勾股定理及三角函数值等知识点,解题的关键是正确作出辅助线3、50【解析】【分析】根据特殊角的三角函数值,求得x-20的值,即可求
20、解【详解】解:cos(x-20)=32,x-20=30,x=50故答案为:50【点睛】此题考查了根据三角函数值求角,解题的关键是熟记特殊角的三角函数值4、或14#14或【解析】【分析】由题意可知当P在AB上时,P是AB的中点,即AB=BP;当P在AB延长线上时,BP=3AB,在直角三角形中由正切公式求出即可【详解】解:(1)如图1所示,BC=3AB,PC=AB,BP=2PC,又四边形ABCD是矩形,tanAPB=ABBP=12;(2)如图2所示,BC=3ABPC=AB,BP=4AB,tanAPB=ABBP=14综上所述APB的正切值为或14故答案为:或14【点睛】本题主要考查矩形性质和三角函数
21、的定义,注意分类讨论思想的运用,解题的关键是分两种情况求出AB与BP的关系5、#【解析】【分析】如图,设小正方形边长为1,根据网格特点,PQF=CBF,可证得PQBC,则QEB=ABC,即AEP=ABC,分别求出AC、BC、AB,根据勾股定理的逆定理可判断ABC是直角三角形,求出tanABC即可【详解】解:如图,设小正方形边长为1,根据网格特点,PQF=CBF=45,PQBC,QEB=ABC,AEP=QEB,AEP=ABC,AC2+BC2=AB2,ABC是直角三角形,且ACB=90,tanABC=,tanAEP=tanABC=,故答案为: 【点睛】本题考查网格性质、勾股定理及其逆定理、平行线的
22、判定与性质、正切、对顶角相等,熟知网格特点,熟练掌握勾股定理及其逆定理是解答的关键三、解答题1、有触礁的危险,见解析【解析】【分析】从点C向直线AB作垂线,垂足为E,设CE的长为x海里,根据锐角三角函数的概念求出x的值,比较即可【详解】解:有触礁的危险理由:从点C向直线AB作垂线,垂足为E, 根据题意可得:AB=20海里,CAE=30,CBE=45,设CE的长为x海里,在RtCBE中:CBE=45,BE=CE=x海里,AE=AB+BE=(20+x)海里,在RtCAE中:CAE=30,tan30=,解得:x=10+10,10+1030,该船若继续向正东方向航行,有触礁的危险【点睛】本题考查的是解
23、直角三角形的应用方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键2、(1)0;(2)【解析】【分析】(1)原式利用负整数指数幂,绝对值化简,特殊角的三角函数值以及零指数幂法则计算即可得到结果;(2)移项后配方,开方,即可得出两个一元一次方程,再求出方程的解即可【详解】解:(1)原式=4-3+-1=0;(2)4x28x10,4x28x-1,配方,得;4x28x4-1+4,(2x-2)2=3,开方,得2x-2=,解得:;【点睛】本题考查了实数的运算,负整数指数幂,绝对值化简,特殊角的三角函数值,零指数幂法则及解一元二次方程,熟练掌握各自的性质是解(1)题的关
24、键,能选择适当的方法解一元二次方程是解(2)题的关键3、(1);(2)【解析】【分析】(1)根据圆周角定理,计算ABC的大小,利用互余原理计算BAD,最后,利用两个角的和,计算BAC;(2)证明,再求的值【详解】(1)于点(2)如图过点作,垂足分别为点,四点共圆,同理可得,四点共圆,即,三点共线,在与中, ,即【点睛】本题考查了圆周角定理,四点共圆,圆内接四边形的性质,三角形相似的判定和性质,特殊角的三角函数值,勾股定理,熟练掌握圆周角定理,圆内接四边形的性质,三角形相似的判定和性质,特殊角的三角函数值,是解题的关键4、【解析】【分析】先运用特殊角的三角函数值和绝对值的知识进行计算,然后再合并即可解答【详解】解:原式()2+|1|2+1【点睛】本题主要考查了特殊角的三角函数值的混合运算、绝对值等知识点,牢记特殊角的三角函数值成为解答本题的关键5、#【解析】【分析】过点作于点,设,则,解直角三角形即可求得,即的值【详解】解:如图,过点作于点在 中,是等腰直角三角形=设,则,沿着直线翻折,点落在边上,记为点,在中,即解得故答案为:【点睛】本题考查了勾股定理,轴对称的性质,解直角三角形,根据题意构造直角三角形是解题的关键