2022年最新浙教版初中数学七年级下册第四章因式分解章节练习试卷(含答案详细解析).docx

上传人:可****阿 文档编号:32518069 上传时间:2022-08-09 格式:DOCX 页数:22 大小:286.67KB
返回 下载 相关 举报
2022年最新浙教版初中数学七年级下册第四章因式分解章节练习试卷(含答案详细解析).docx_第1页
第1页 / 共22页
2022年最新浙教版初中数学七年级下册第四章因式分解章节练习试卷(含答案详细解析).docx_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2022年最新浙教版初中数学七年级下册第四章因式分解章节练习试卷(含答案详细解析).docx》由会员分享,可在线阅读,更多相关《2022年最新浙教版初中数学七年级下册第四章因式分解章节练习试卷(含答案详细解析).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第四章因式分解章节练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下面从左到右的变形中,因式分解正确的是()A.2x24xy2x(x+2y)B.x2+9(x+3)2C.x22x1(x1)2D.(x+2)(x2)x242、下列因式分解正确的是()A.x24(x+4)(x4)B.4a28aa(4a8)C.a2+2a+2(a+1)2+1D.x22x+1(x1)23、若多项式x2mx+n可因式分解为(x+3)(x4).其中m,n均为整数,则mn的值是( )A.13B.11C.9

2、D.74、下列因式分解正确的是( )A.B.C.D.5、下列各式中,能用完全平方公式分解因式的是()A.B.C.D. 6、的值为( )A.B.C.D.3537、多项式的因式为( )A.B.C.D.以上都是8、下面的多项式中,能因式分解的是()A.2m2B.m2+n2C.m2nD.m2n+19、多项式的各项的公因式是( )A.B.C.D.10、下列各式中不能用公式法因式分解的是( )A.x24B.x24C.x2xD.x24x411、下列各式从左边到右边的变形中,属于因式分解的是( )A.B.C.D.12、小明是一名密码翻译爱好者,在他的密码手册中有这样一条信息:,分别对应下列六个字:勤,博,奋,

3、学,自,主,现将因式分解,结果呈现的密码信息应是( )A.勤奋博学B.博学自主C.自主勤奋D.勤奋自主13、已知,则的值为( )A.0和1B.0和2C.0和-1D.0或114、多项式可以因式分解成,则的值是( )A.-1B.1C.-5D.515、对于任何整数a,多项式都能( )A.被3整除B.被4整除C.被5整除D.被a整除二、填空题(10小题,每小题4分,共计40分)1、多项式的公因式是_2、已知,则的值等于_3、因式分解:2a2-4a-6=_4、分解因式:12a2b9ac_5、已知,则的值为_6、因式分解_7、若,则代数式的值等于_8、若a+b2,ab3,则代数式a3b+2a2b2+ab3

4、的值为_9、分解因式:_10、已知,则_三、解答题(3小题,每小题5分,共计15分)1、发现与探索 (1)根据小明的解答将下列各式因式分解小明的解答:= = = (2)根据小丽的思考解决下列问题:小丽的思考:代数式,再加上4,则代数式,则有最小值为4说明:代数式的最小值为60请仿照小丽的思考解释代数式的最大值为6,并求代数式的最大值2、分解因式:(x22x)212(x22x)+363、(画图痕迹用黑色签字笔加粗加黑)如图,正方形纸片A类,B类和长方形纸片C类若干张,(1)请你选取适当数量的三种纸片,拼成一个长为、宽为的长方形,画出拼好后的图形观察拼图共用_张A类纸片,_张B类纸片,_张C类纸片

5、,通过面积计算可以发现=_(2)请你用这三类卡片拼出面积为的长方形,画出拼好后的图形观察拼图共用_张A类纸片,_张B类纸片,_张C类纸片,通过面积计算可以发现_利用拼图,把下列多项式因式分解=_;_-参考答案-一、单选题1、A【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、把一个多项式转化成两个整式乘积的形式,故A正确;B、等式不成立,故B错误;C、等式不成立,故C错误;D、是整式的乘法,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.2、D【分析】各式分解得到结果,即可作

6、出判断.【详解】解:A、原式(x+2)(x2),不符合题意;B、原式4a(a2),不符合题意;C、原式不能分解,不符合题意;D、原式(x1)2,符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、A【分析】根据多项式与多项式的乘法法则化简(x+3)(x4),再与式x2mx+n比较求出m,n的值,代入mn计算即可.【详解】解:(x+3)(x4)=x2-4x+3x-12=x2-x-12,x2mx+n= x2-x-12,m=1,n=-12,mn=1+12=13.故选A.【点睛】本题考查了因式分解,以及多项式与多项式的乘法计算,熟练掌握因式分解

7、与乘法运算是互为逆运算的关系是解答本题的关键.4、D【分析】A.直接利用平方差公式分解因式得出答案;B.直接提取公因式a,进而分解因式即可;C.直接利用完全平方公式分解因式得出答案;D.首先提取公因式2,再利用完全平方公式分解因式得出答案.【详解】解:A.x2-9=(x-3)(x+3),故此选项不合题意;B.a3-a2+a=a(a2-a+1),故此选项不合题意;C.(x-1)2-2(x-1)+1=(x-2)2,故此选项不合题意;D.2x2-8xy+8y2=2(x-2y)2,故此选项符合题意;故选:D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.5、D【分析

8、】根据完全平方公式法分解因式,即可求解.【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键.6、D【分析】观察式子中有4次方与4的和,将因式分解,再根据因式分解的结果代入式子即可求解【详解】原式故答案为:【点睛】本题考查了因式分解的应用,找到是解题的关键.7、D【分析】将先提公因式因式分解,然后运用平方差公式因式分解即可.【详解】解:,、,均为的因式,故选

9、:D.【点睛】本题考查了提公因式法因式分解以及运用平方差公式因式分解,熟练运用公式法因式分解是解本题的关键.8、A【分析】分别根据提公因式法因式分解以及乘法公式逐一判断即可.【详解】解:A、2m22(m1),故本选项符合题意;B、m2+n2,不能因式分解,故本选项不合题意;C、m2n,不能因式分解,故本选项不合题意;D、m2n+1,不能因式分解,故本选项不合题意;故选A.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.9、A【分析】公因式的定义:一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.由公因式的定义求解.【详解】解:这三个单项式的数字最大公因

10、数是1,三项含有字母是a,b,其中a的最低次幂是a2,b的最低次幂是b,所以多项式的公因式是.故选A.【点睛】本题主要考查了公因式,关键是掌握确定多项式中各项的公因式,可概括为三“定”:定系数,即确定各项系数的最大公约数;定字母,即确定各项的相同字母因式(或相同多项式因式);定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.10、B【分析】根据完全平方公式:a22abb2(ab)2以及平方差公式分别判断得出答案.【详解】解:A、x24(x2)(x2),不合题意;B、x24,不能用公式法分解因式,符合题意;C、x2x(x)2,运用完全平方公式分解因式,不合题意;D、x24x4(x2

11、)2,运用完全平方公式分解因式,不合题意;故选:B.【点睛】本题考查了公式法分解因式,解题的关键是熟练运用完全平方公式、平方差公式.11、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此解答即可.【详解】解:A、是整式乘法,不是因式分解,故此选项不符合题意;B、符合因式分解的定义,是因式分解,故此选项符合题意;C、右边不是整式积的形式,不是因式分解,故此选项不符合题意;D、,分解错误,故此选项不符合题意;故选:B.【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.12、A【分析】将式子先提取公因式再用平方差公式因式分解可得:(x2-y2)

12、a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),再结合已知即可求解.【详解】解:(x2-y2)a2-(x2-y2)b2=(x2-y2)(a2-b2)=(x+y)(x-y)(a+b)(a-b),由已知可得:勤奋博学,故选:A.【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求是解题的关键.13、B【分析】根据已知条件得出(x-1)3-(x-1)=0,再通过因式分解求出x的值,然后代入要求的式子进行计算即可得出答案.【详解】解:,x-1=(x-1)3,(x-1)3-(x-1)=0,(x-1)(x-1)2-1=0,(x-1)(x-1

13、+1)(x-1-1)=0,x(x-1)(x-2)=0,x1=0,x2=1,x3=2,x2-x=0或x2-x=12-1=0或x2-x=22-2=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,解题的关键是通过式子变形求出x的值.14、D【分析】先提公因式,然后将原多项式因式分解,可求出和 的值,即可计算求得答案.【详解】解:,.故选:.【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.15、B【分析】多项式利用完全平方公式分解,即可做出判断.【详解】解:原式则对于任何整数a,多项式都能被4整除.故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题

14、的关键.二、填空题1、【分析】找出多项式中各单项式的公共部分即可.【详解】解:多项式的公因式是:,故答案为:.【点睛】本题主要考查公因式的概念,找出多项式中各单项式的公共部分是解题的关键.2、-36【分析】将所求代数式先提取公因式xy,再利用完全平方公式分解因式,得出,然后整体代入x+y,xy的值计算即可.【详解】解:=,=-36,故答案为:-36.【点睛】本题考查了因式分解方法的应用,代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.3、2(a-3)(a+1)a+1)(a-3)【分析】提取公因式2,再用十字相乘法分解因式即可.【详解】解:2a24a62(a22a3)2(a-3)(

15、a+1)故答案为:2(a-3)(a+1)【点睛】本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.4、【分析】根据提公因式法分解因式求解即可.【详解】解:12a2b9ac.故答案为:.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.5、-4【分析】由ab8,得到a8b,代入ab160,得到(b4)20,根据非负数的性质得到结论.【详解】解:ab8,

16、a8b,ab160,(8b)b16b28b16(b4)20,(b4)20,b4,a4,a2b42(4)4,故答案为:4.【点睛】本题考查了配方法的应用,非负数的性质,正确的理解题意是解题的关键.6、【分析】根据完全平方公式分解因式即可.【详解】解:=【点睛】此题主要考查了公式法分解因式,正确运用乘法公式是解题关键.7、4【分析】直接利用已知代数式将原式得出x+y=2,再将原式变形把数据代入求出答案.【详解】解:x+y-2=0,x+y=2,则代数式x2+4y-y2=(x+y)(x-y)+4y=2(x-y)+4y=2(x+y)=4.故答案为:4.【点睛】此题主要考查了公式法的应用,正确将原式变形是

17、解题关键.8、-12【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【详解】解:a+b=2,ab=3,a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=34,=12.故答案为:12.【点睛】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.9、【分析】根据平方差公式 进行因式分解,即可.【详解】解:,故答案为:【点睛】本题主要考查了因式分解的方法,解题的关键是根据多项式的特点选合适的方法进行因式分解.10、18【分析】本题要求代数式

18、a3b-2a2b2+ab3的值,而代数式a3b-2a2b2+ab3恰好可以分解为两个已知条件ab,(a-b)的乘积,因此可以运用整体的数学思想来解答.【详解】解:a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2当a-b=3,ab=2时,原式=232=18,故答案为:18【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.三、解答题1、(1);(2)见解析;【分析】(1)仿照小明的解答过程、利用完全平方公式、平方差公式计算;(2)仿照小丽的思考过程,利用完全平方公式、平方差公式计算、偶次方的非负性解答.【详解】解

19、:(1)(2)解:代数式无论a取何值再减去60,则代数式则有最小值-60代数式的最小值为60.解释:无论a取何值,再加上6,则代数式则有最大值6求值:代数式有最大值30.【点睛】本题考查的是因式分解的应用、偶次方的非负性,掌握完全平方公式、平方差公式、偶次方的非负性是解题的关键.2、(x22x6)2【分析】仔细观察把看做一个整体,可以发现正好是一个完全平方式,直接利用公式法分解因式得出答案.【详解】解:原式(x22x6)2.故答案为:(x22x6)2.【点睛】本题主要考查了因式分解,解题的关键在于能够准确观察出原式是一个完全平方式.3、见解析;1,2,3,;(2)见解析;3,1,4,;【分析】(1)由如图要拼成一个长为、宽为的长方形,即可得出答案;利用面积公式可得出这个;(2)根据题意画出相应图形;利用面积公式可得出;根据长方形的面积分解因式.【详解】解:如图:1,2,3,;(2)解:如图:3,1,4.;【点睛】本题主要考查了因式分解的应用,解题的关键是能运用图形的面积计算的不同方法得到多项式的因式分解.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁