《2022年人教版初中数学七年级下册第九章不等式与不等式组专题测评试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《2022年人教版初中数学七年级下册第九章不等式与不等式组专题测评试题(含答案及详细解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第九章不等式与不等式组专题测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、若关于x的分式方程+1有整数解,且关于y的不等式组恰有2个整数解,则所有满足条件的整数a的值之积是()A0B24C72D122、一元一次不等式组的解是()Ax2Bx4C4x2D4x23、下列命题是真命题的是( )A若,则为坐标原点B若,且平行于轴,则点坐标为C点关于原点对称的点坐标是D若关于一元一次不等式组无解,则的取值范围是4、解集如图所示的不等式组为()ABCD5、(a)和b在数轴上表示的点如
2、图所示,则下列判断正确的是( )Aa1Bba0Ca10Dab06、如果 , 那么下列不等式中不成立的是( )ABCD7、已知关于x的不等式组只有四个整数解,则实数a的取值范围( )A3a2B3a2C3a2D3a28、解集在数轴上表示为如图所示的不等式的是( )ABCD9、某次知识竞赛共有30道选择题,答对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对x题,可得式子为()A10x3(30x)70B10x3(30x)70C10x3x0D10x3(30x)7010、已知 ab,则( )Aa2b2Ba+1b+1CacbcD二、填空题(5小题,每小题4分
3、,共计20分)1、若关于的不等式有解,则的取值范围是_.2、如果a2,那么不等式组的解集为_,的解集为_3、根据“3x与5的和是负数”可列出不等式 _4、不等式的解集是_5、 “x的2倍比y小”用不等式表示为 _三、解答题(5小题,每小题10分,共计50分)1、有一批产品需要生产装箱,3台A型机器一天刚好可以生产6箱产品,而4台B型机器一天可以生产5箱还多20件产品已知每台A型机器比每台B型机器一天多生产40件(1)求每箱装多少件产品?(2)现需生产28箱产品,若用1台A型机器和2台B型机器生产,需几天完成?(3)若每台A型机器一天的租赁费用是240元,每台B型机器一天的租赁费用是170元,可
4、供租赁的A型机器共3台,B型机器共4台现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算)2、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”例如:18的正因数有1、2、3、6、9、18,它的真因数之和为;51的正因数有1、3、17、51,它的真因数之和为,所以称18和51为“亲和数”又如要找8的亲和数,需先找出8的真因数之和为,而,所以8的亲和数为,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”例如:121
5、、1351等(1)10的真因数之和为_;(2)求证:一个四位的“两头蛇数”与它去掉两头后得到的两位数的3倍的差,能被7整除;(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”3、我校为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜4个,共需资金1500元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元(1)甲、乙两种书柜每个的价格分别是多少元?(2)若我校计划购进这两种规格的书柜共30个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多
6、能够提供资金6420元,请设计所有可行的购买方案供学校选择4、为奖励在文艺汇演中表现突出的同学,班主任派小亮到文具店为获奖同学购买奖品小亮发现,如果买1个笔记本和3支钢笔,则需要18元;如果买2个笔记本和5支钢笔,则需要31元(1)求购买每个笔记本和每支钢笔各多少元?(2)班主任给小亮的班费是100元,需要奖励的同学是24名(每人奖励一件奖品),若购买的钢笔数不少于笔记本数,求小亮有哪几种购买方案?5、用不等式表示:(1)x与-3的和是负数;(2)x与5的和的28不大于-6;(3)m除以4的商加上3至多为5-参考答案-一、单选题1、D【分析】根据分式方程的解为正数即可得出a1或3或4或2或6,
7、根据不等式组有解,即可得出1+y,找出31+2中所有的整数,将其相乘即可得出结论【详解】先解分式方程,再解一元一次不等式组,进而确定a的取值解:+1,x+x22ax2x+ax2+2(2+a)x4x 关于x的分式方程+1有整数解,2+a1或2或4且2a1或3或4或2或62(y1)+a15y,2y2+a15y2y5y1a+23y3ay1+2y+10,2y1y1+y关于y的不等式组恰有2个整数解,31+26a3又a1或3或4或2或6,a3或4所有满足条件的整数a的值之积是3(4)12故选:D【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出31+2是解题
8、的关键2、C【分析】分别求出各不等式的解集,再求出其公共解集即可【详解】解:,解不等式得,解得:,解不等式得,解得:,故不等式组的解集为:故选:C【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键3、C【分析】分析是否为真命题,需要分析各题设是否能推出结论,若能推出结论即为真命题,反之即为假命题【详解】解:A. 若,则可为轴上的点或轴上的点或坐标原点,故该选项为假命题不符合题意;B. 若,且平行于轴,则点坐标为或,故该选项为假命题不符合题意;C. 点关于原点对称的点坐标是是真命题,故该选项符合题意;D. 若关于一元一次不等式
9、组无解,则的取值范围是,故该选项为假命题不符合题意故选:C【点睛】本题主要考查了真命题与假命题,以及平面直角坐标系和一元一次不等式组的相关知识,熟练掌握平面直角坐标系和一元一次不等式组的运用是解答此题的关键4、A【分析】根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可【详解】解:根据图象可得,数轴所表示的不等式组的解集为:,A选项解集为:,符合题意;B选项解集为:,不符合题意;C选项解集为:,不符合题意;D选项解集为:,不符合题意;故选:A【点睛】题目主要考查不等式组的解集在数轴上的表
10、示及解集的确定,理解不等式组解集的确定方法是解题关键5、B【分析】化简(a)a,根据数轴得到a1b0,再结合有理数的加减、不等式的性质逐项分析可得答案【详解】解:(a)a,由数轴可得a1b0,a1,a1,故A选项判断错误,不合题意;b0,b0,ba0,故B正确,符合题意;a1,a+10,故C判断错误,不合题意;ab,a+b0,ab0,故D判断错误,不合题意故选:B【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键6、D【分析】根据不等式的性质逐个判断即可不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质
11、2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变【详解】解:A、,选项正确,不符合题意;B、,选项正确,不符合题意;C、,选项正确,不符合题意;D、,选项错误,符合题意故选:D【点睛】此题考查了不等式的性质,解题的关键是熟练掌握不等式的性质不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变7、C【分析】先求出不等式解组的解集为,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即
12、可得到答案【详解】解:解不等式得;解不等式得;不等式组有解,不等式组的解集是,不等式组只有4个整数解,不等式组的4个整数解是:1、0、-1、-2,故选C【点睛】本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法8、C【分析】根据数轴可以得到不等式的解集【详解】解:根据不等式的解集在数轴上的表示,向右画表示或,空心圆圈表示,故该不等式的解集为x2;故选C【点睛】本题要考查的是在数轴上表示不等式的解集,运用数形结合的思想是本题的解题关键9、D【分析】根据得分扣分不少于70分,可得出不等式【详解】解:设答对x题,答错或不答(30x),则10x
13、3(30x)70故选:D【点睛】本题考查了由实际问题抽象出一元一次不等式的知识,解答本题的关键是找到不等关系10、B【分析】根据不等式的性质逐项分析即可【详解】解:A、ab,a-2b-2,故不符合题意; B、ab,-a-b,-a+1-b+1,故符合题意; C、ab,当c0时,acbc不成立,故不符合题意; D、ab,当c0时,不成立,故不符合题意;故选B【点睛】本题考查了不等式的性质:把不等式的两边都加(或减去)同一个整式,不等号的方向不变;不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式两边都乘(或除以)同一个负数,不等号的方向改变二、填空题1、【分析】根据绝对值的几何意义,可把
14、视为数轴上表示数x的点到表示数-1(1个),-2(2个),-3(3个),-4(4个),-5(5个)的点的距离之和,得到当x位于第8个点时,取得最小值15,即可求出a的取值范围【详解】解:由绝对值的几何意义可得,把视为数轴上表示数x的点到表示数-1(1个),-2(2个),-3(3个),-4(4个),-5(5个)的点的距离之和,当x位于第8个点时,即当x=-4时,的最小值为15,当关于的不等式有解时,a的取值范围是故答案为:【点睛】此题考查了绝对值的几何意义和不等式性质,解题的关键是根据题意求得的最小值2、x2 无解 【分析】根据同大取大,同小取小,大小小大中间取判断即可;【详解】a2,不等式组的
15、解集为x2;不等式组中x不存在,方程组无解;故答案是:x2;无解【点睛】本题主要考查了不等式组的解集表示,准确分析判断是解题的关键3、【分析】3x与5的和为,和是负数即和小于0,列出不等式即可得出答案【详解】3x与5的和是负数表示为故答案为:【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键4、x-5【分析】根据不等式的性质求解即可【详解】解:,3x-15,解得x-5,故答案为:x-5【点睛】此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键5、2xy【分析】x的2倍即为2x,小即“”,据此列不等式【详解】解:由题意得,2xy故答案为:2xy【点睛】本题考查了由实际问题
16、抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系是关键三、解答题1、(1)60件;(2)6天;(3)A型机器前2天租3台,第3天租2台;B型机器每天租3台【解析】【分析】(1)设每箱装x件产品,根据“每台A型机器比每台B型机器一天多生产40件”列出方程求解即可;(2)根据第(1)问的答案可求得每台A型机器每天生产120件,每台B型机器每天生产80件,根据工作时间工作总量工作效率即可求得答案;(3)先将原问题转化为“若3天共有9台次A型机器,12台次B型机器可用,求这3天完成28箱(1680件产品)所需的最省费用”,再设租A型机器a台次,则租B型机器的台次数为台次,由此
17、可求得a的取值范围,进而可求得符合题意的a的整数解,再分别求得对应的总费用,比较大小即可【详解】解:(1)设每箱装x件产品,根据题意可得:,解得:,答:每箱装60件产品;(2)由(1)得:每台A型机器每天生产(件),每台B型机器每天生产(件),(天),答:若用1台A型机器和2台B型机器生产,需6天完成;(3)根据题意可把问题转化为:若3天共有9台次A型机器,12台次B型机器可用,求这3天完成28箱(1680件产品)所需的最省费用设租A型机器a台次,则租B型机器的台数为台次,共有12台次B型机器可用,解得a6,共有9台次A型机器可用,a9,699,又a为整数,若a9,则,需选B型机器8台次,此时
18、费用共为240917083520(元);若a8,则,需选B型机器9台次,此时费用共为240817093450(元);若a7,则,需选B型机器11台次,此时费用共为2407170113550(元);若a6,则,需选B型机器12台次,此时费用共为2406170123480(元);3450348035203550,3天中选择共租A型机器8台次,B型机器9台次费用最省,如:A型机器前两天租3台,第3天租2台,B型机器每天租3台,此时的费用最省,最省总费用为3450元,答:共有4种方案可选择,分别为:3天中共租A型机器9台次,B型机器8台次;3天中共租A型机器8台次,B型机器9台次;3天中共租A型机器7
19、台次,B型机器11台次;3天中共租A型机器6台次,B型机器12台次,其中3天中共租A型机器8台次,B型机器9台次(如A型机器前两天租3台,第3天租2台,B型机器每天租3台),此时的费用最省,最省总费用为3450元【点睛】本题考查了一元一次方程的应用以及解一元一次不等式,解题的关键是:找准等量关系,正确列出一元一次方程以及根据各数量之间的关系,正确列出一元一次不等式2、(1)8;(2)见解析;(3)10461,11451,12441【解析】【分析】(1)先求出10的真因数,再求10的真因数之和即可;(2)先把给出的数用代数式表示,根据要求列代数式得=,说明括号中的数为整式即可;(3)设五位“两头
20、蛇数”为(),先求出16的真因数之和15,找到16的亲和数为 ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为,可得能被33整除,根据,且,得出能被33整除得出即可【详解】.解:(1)10的真因数为1,2,5,10的真因数之和为1+2+5=8,故答案为8;(2),=,=,又因为,的整数,为整数, 一个四位“两头蛇数”与它去掉两头后得到的两位数的3倍的差能被7整除;(3)设五位“两头蛇数”为(),末位数为1,不能被2(真因数)整除,16的真因数之和,16的亲和数为 ,能被33整除,能被33整除,又2不能被33整除,能被33整除,且,或. 或(舍去),或或,所以五位“两头蛇数”为
21、10461,11451,12441【点睛】本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键3、(1)甲、乙两种书柜每个的价格分别为元,元;(2)第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种书柜15个,乙种书柜15个.【解析】【分析】(1)设甲、乙两种书柜每个的价格分别为元,元,再根据甲种书柜3个、乙种书柜4个,共需资金1500元;甲
22、种书柜4个,乙种书柜3个,共需资金1440元,列方程组,再解方程组即可得到答案;(2)设计划购进甲种书柜个,则购进乙种书柜个,根据乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,列不等式组,再解不等式组结合为正整数,从而可得答案.【详解】解:(1)设甲、乙两种书柜每个的价格分别为元,元,则 解得: 答:甲、乙两种书柜每个的价格分别为元,元.(2)设计划购进甲种书柜个,则购进乙种书柜个,则 由得: 由得:,所以: 又因为为正整数,或或 所以所有可行的购买方案为:第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种
23、书柜15个,乙种书柜15个.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式组的应用,设出合适的未知数,确定相等关系列方程组,确定不等关系列不等式组是解本题的关键.4、(1)设每个笔记本3元,每支钢笔5元;(2)有三种购买方案:购买笔记本10个,则购买钢笔14个;购买笔记本11个,则购买钢笔13个;购买笔记本12个,则购买钢笔12个【解析】【分析】(1)每个笔记本x元,每支钢笔y元,根据题意列出方程组求解即可;(2)设购买笔记本m个,则购买钢笔(24-m)个利用总费用不超过100元和钢笔数不少于笔记本数列出不等式组求得m的取值范围后即可确定方案【详解】解:(1)设每个笔记本x元,每支钢
24、笔y元依题意得:解得:答:设每个笔记本3元,每支钢笔5元(2)设购买笔记本m个,则购买钢笔(24-m)个依题意得:解得:12m10m取正整数m10或11或12有三种购买方案:购买笔记本10个,则购买钢笔14个购买笔记本11个,则购买钢笔13个购买笔记本12个,则购买钢笔12个【点睛】本题考查了一元一次不等式组的应用及二元一次方程组的应用,解题的关键是仔细的分析题意并找到等量关系列方程或不等关系列不等式5、(1)x-30;(2)28(x+5)-6;(3)5【解析】【分析】(1)根据负数是小于0的数列不等式即可;(2)不大于即小于或等于,根据不大于的含义列不等式即可;(3)至多即小于或等于,根据至多的含义列不等式即可.【详解】解:(1)x-30;(2)28(x+5)-6;(3)5【点睛】本题考查的列不等式,列不等式时,应抓住“大于”、“不大于”、“不是”、“至多”、“非负数”等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式在不等式及其应用的题目中,经常会出现一些表示不等关系的词语正确理解这些关键词很重要如:若x是非负数,则x0;若x是非正数,则x0;若x大于y,则有x-y0;若x小于y,则有x-y0等