《2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数专项测试练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数专项测试练习题(无超纲).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在中,C=90,A、B、C的对边分别为、,则下列式子一定成立的是( )ABCD2、如图,在平地上种植树木
2、时,要求株距(相邻两树间的水平距离)为4m如果在坡度为1:2的山坡上种树,也要求株距为4m,那么相邻两树间的垂面距离为()A4mB8mC2mD1m3、如图所示,点C是O上一动点,它从点A开始逆时针旋转一周又回到点A,点C所走过的路程为x,BC的长为y,根据函数图象所提供的信息,AOB的度数和点C运动到弧AB的中点时所对应的函数值分别是()A150,B150,2C120,D120,24、如图,在扇形AOB中,AOB90,以点A为圆心,OA的长为半径作交于点C,若OA2,则阴影部分的面积为()A BCD5、图是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组
3、合得到如图所示的四边形若,则的值为( )ABCD6、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB6,DAC60,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:BDEEFC;EDEC;ADFECF;点E运动的路程是2,其中正确结论的序号为()ABCD7、小金将一块正方形纸板按图1方式裁剪,去掉4号小正方形,拼成图2所示的矩形,若已知AB9,BC16,则3号图形周长为()A B C D8、球沿坡角的斜坡向上滚动了5米,此时钢球距地面的高度是( )A米B米C米D米9、在直角ABC中,AC2,则tanA的值为( )ABCD1
4、0、如图,在直角坐标平面内有一点,那么射线与轴正半轴的夹角的正切值是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,中,点D、点E分别在AB、AC上,连接CD、ED,则_2、如图,已知扇形OAB的半径为6,C是弧AB上的任一点(不与A,B重合),CMOA,垂足为M,CNOB,垂足为N,连接MN,若AOB45,则MN_3、如图,ABC的顶点是正方形网格的格点,则cosC_4、已知斜坡AB的水平宽度为12米,斜面坡度为,则斜坡AB的长为_;坡角为_5、规定: ,据此判断下列等式成立的是:_(写出所有正确的序号)cos(60) ,sin75,三、解答题(5
5、小题,每小题10分,共计50分)1、如图1所示的是一辆混凝土布料机的实物图,图2是其工作时部分示意图,AC是可以伸缩的布料臂,其转动点A离地面BD的高度AH为3.2米当布料臂AC长度为8米,张角为时,求布料口C离地面的高度(结果保留一位小数;参考数据:,)2、计算:3、已知直线m与O,AB是O的直径,ADm于点D(1)如图,当直线m与O相交于点E、F时,求证:DAE=BAF (2)如图,当直线m与O相切于点C时,若DAC=35,求BAC的大小;(3)若PC2,PB2,求阴影部分的面积(结果保留)4、如图,在ABCD中,过B作BECD于点E,连结AE,F为AE上一点,且AFBD(1)求证:ABF
6、EAD(2)若,AD6,BAE30,求BF的长5、如图1,在中,(1)求的长;(2)如图2,点P沿线段从B点向C点以每秒的速度运动,同时点Q沿线段向A点以每秒的速度运动,且当P点停止运动时,另一点Q也随之停止运动,若P点运动时间为t秒若时,求证:;并求此时t的值点P沿线段从B点向C点运动过程中,是否存在t的值,使的面积最大;若存在,请求出t的值;若不存在,请说明理由-参考答案-一、单选题1、B【分析】根据题意,画出直角三角形,再根据锐角三角函数的定义对选项逐个判断即可【详解】解:由题意可得,如下图:,则,A选项错误,不符合题意;,则,B选项正确,符合题意;,则,C选项错误,不符合题意;,则,D
7、选项错误,不符合题意;故选B,【点睛】此题考查了锐角三角函数的定义,解题的关键是画出图形,根据锐角三角函数的定义进行求解2、C【分析】根据坡度的概念求出AC,得到答案【详解】解:如图,AB的坡度为1:2,即,解得,AC=2,故选:C【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键3、D【分析】观察图象可得:y的最大值为4,即BC的最大值为4,当x0时,y2,即AB2,如图,点C是的中点,连接OC交AB于点D,则OCAB,ADBD,AOB2BOC,利用三角函数定义可得BOC60,即可求得答案【详解】解:由函数图象可得:y的最大值为4,即
8、BC的最大值为4,O的直径为4,OAOB2,观察图象,可得当x0时,y2,AB2,如图,点C是的中点,连接OC交AB于点D,OCAB,ADBD,AOB2BOC,sinBOC,BOC60,AOB120,OBOC,BOC60,BOC是等边三角形,BCOB2,即点C运动到弧AB的中点时所对应的函数值为2故选:D【点睛】本题主要考查了垂径定理,锐角三角函数,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键4、B【分析】连接OC、AC,作CDOA于D,可证AOC为等边三角形,得出OAC60,可求CD=ODtan60=,可求SOAC,求出BOC30,再求出,S扇形OAC,可得阴影部分的面积()【详解
9、】解:连接OC、AC,作CDOA于D,OAOCAC,AOC为等边三角形,OAC60,CDOA,CDO=90,OD=AD=,CD=ODtan60=,SOAC,BOC30,S扇形OAC,则阴影部分的面积(),故选:B【点睛】本题考查扇形面积,等边三角形判定与性质,锐角三角函数,掌握扇形面积,等边三角形判定与性质,锐角三角函数是解题关键5、A【分析】在中,可得的长度,在中,代入即可得出答案【详解】解:,在中,在中,.故选:A【点睛】本题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法进行计算是解决本题的关键.6、D【分析】根据DAC60,ODOA,得出OAD为等边三角形,再由DFE为等边三角
10、形,得EDFEFDDEF60,即可得出结论正确;如图,连接OE,利用SAS证明DAFDOE,再证明ODEOCE,即可得出结论正确;通过等量代换即可得出结论正确;如图,延长OE至E,使OEOD,连接DE,通过DAFDOE,DOE60,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,从而得出结论正确;【详解】解:DAC60,ODOA,OAD为等边三角形,DOADAOODA60,ADOD,DFE为等边三角形,EDFEFDDEF60,DFDE,BDE+FDOADF+FDO60,BDEADF,ADF+AFD+DAF180,ADF+AFD180DAF120,EFC+AFD+DF
11、E180,EFC+AFD180DFE120,ADFEFC,BDEEFC,故结论正确;如图,连接OE,由得ADOD,DFDE,ODA60,EDF60,ADFODE,在DAF和DOE中,DAFDOE(SAS),DOEDAF60,COD180AOD120,COECODDOE1206060,COEDOE,在ODE和OCE中,ODEOCE(SAS),EDEC,OCEODE,故结论正确; 由得ODEADF,OCEODE,ADFOCE,即ADFECF,故结论正确;如图,延长OE至E,使OEOD,连接DE,DAFDOE,DOE60,点F在线段AO上从点A至点O运动时,点E从点O沿线段OE运动到E,OEODAD
12、ABtanABD6tan302,点E运动的路程是2,故结论正确;故选:D【点睛】本题主要考查了矩形性质,等边三角形判定和性质,全等三角形判定和性质,等腰三角形的判定和性质,点的运动轨迹等,解题的关键是熟练掌握全等三角形判定和性质、等边三角形判定和性质等相关知识7、B【分析】设 而AB9,BC16,如图,由(图1)是正方形,(图2)是矩形,4号图形为小正方形,得到 再证明再建立方程求解,延长交于 则 再利用勾股定理求解 从而可得答案.【详解】解:如图,由题意得:(图1)是正方形,(图2)是矩形,4号图形为小正方形, 设 而AB9,BC16, 结合(图1),(图2)的关联信息可得: 整理得: 解得
13、: 经检验:不符合题意,取 延长交于 则 四边形是矩形, 所以3号图形的周长为: 故选B【点睛】本题考查的是矩形的判定与性质,正方形的性质,锐角三角函数的应用,一元二次方程的应用,从(图形1)与(图形2)中的关联信息中得出图形中边的相等是解本题的关键.8、A【分析】过铅球C作CB底面AB于B,在RtABC中,AC=5米,根据锐角三角函数sin31=,即可求解【详解】解:过铅球C作CB底面AB于B,如图在RtABC中,AC=5米,则sin31=,BC=sin31AC=5sin31故选择A【点睛】本题考查锐角三角函数,掌握锐角三角函数的定义是解题关键9、B【分析】先利用勾股定理求出BC的长,然后再
14、求tanA的值【详解】解:在RtABC中,AB=3,AC2,BC= tanA=故选:B【点睛】本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中10、D【分析】作PMx轴于点M,构造直角三角形,根据三角函数的定义求解【详解】解:作PMx轴于点M,P(6,8),OM=6,PM=8,tan=故选:D【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题二、填空题1、【解析】【分析】如图,过作于 过作于 作于 证明四边形为矩形,再求解 证明 设 则 再表示 利用列方程,再解方程可得答案.【详解】解:如图,过作于 过作于 作于 四边形为
15、矩形, 设 则 由 同理: 解得: 故答案为:【点睛】本题考查的是等腰直角三角形的性质,矩形的判定与性质,等腰三角形的判定与性质,锐角三角函数的应用,熟练的运用“锐角三角函数建立方程”是解本题的关键.2、3【解析】【分析】根据题意作辅助线,构建三角形相似,先证明DMCDNO,得DMDC=DNDO,由夹角是公共角得:DMNDCO,得MNCO=DNDO,根据AOB45及特殊的三角函数值,代入比例式可得结论【详解】解:连接OC,延长OA、NC交于D,则OC6,CMOA,CNOB,DMCDNO90,DD,DMCDNO,DMDN=DCDO,即DMDC=DNDO,DD,DMNDCO,MNCO=DNDO,C
16、NOB,AOB45,sinAOBDNOD=22,MNOC=22,OC6,MN6=22,MN.故答案为:【点睛】本题考查的是三角形相似的性质和判定,特殊的三角函数值及三角函数的定义,根据题意作出辅助线,构造出直角三角形是解答此题的关键3、255#255【解析】【分析】如图所示,连接BE,先计算出CE、BE、BC的长,即可利用勾股定理的逆定理得到CEB=90,由此求解即可【详解】解:如图所示,连接图中BE,由勾股定理得:CE=42+22=25,BE=12+22=5,BC=32+42=5,CE2+BE2=252+52=25=BC2,CEB是直角三角形,CEB=90,cosC=CECB=255,故答案
17、为:255【点睛】本题主要考查了勾股定理和勾股定理的逆定理,余弦,解题的关键在于能够找到E点构造直角三角形4、 83 30#30度【解析】【分析】如图,由题意得:BCAC,AC=12,BC:AC=1:3,再利用坡度的含义求解A=30, 再利用A的余弦函数值求解即可.【详解】解:如图,由题意得:BCAC,AC=12,BC:AC=1:3, 又tanA=BCAC=13=33, A=30, 而cosA=ACAB, AB=12cos30=1223=83, 故答案为:83,30【点睛】本题考查的是解直角三角形的应用,坡度,坡角的含义,由坡度求解出坡角为是解本题的关键.5、【解析】【分析】根据规定运算法则可
18、得,由此可判断;根据和规定的运算法则即可判断;根据和规定的运算法则即可判断;根据和规定的运算法则即可得【详解】解:,等式不成立;,等式成立;,等式成立;,等式成立;综上,等式成立的是,故答案为:【点睛】本题考查了正弦和余弦,掌握理解规定的三角函数运算法则是解题关键三、解答题1、高度为7.0米【解析】【分析】过点C作于点E,过点A作于点F,根据矩形的判定定理可得四边形AHEF为矩形,由图中角的关系可得,在中,利用正弦三角函数可得,根据图形中即可得【详解】解:如图,过点C作于点E,过点A作于点F,四边形AHEF为矩形,.在中,答:布料口C离地面的高度为7.0米【点睛】题目主要考查矩形的判定和性质,
19、锐角三角函数解三角形等,理解题意,作出相应辅助线是解题关键2、0【解析】【分析】根据化简绝对值,负整数指数幂,特殊角的三角函数值,进行混合运算即可【详解】解:原式【点睛】本题考查了化简绝对值,负整数指数幂,特殊角的三角函数值,牢记特殊角的三角函数值并正确的进行实数的混合运算是解题的关键3、(1)见解析;(2);(3)【解析】【分析】(1)通过已知条件可知,再通过同角的补交相等证得,即可得到答案;(2)利用,得,再通过OA=OC,得;(3)现在中,利用勾股定理求得半径r=2,再通过,得,即可求得,那么,即可求解【详解】解:(1)如图,连接BFADmAB是O的直径,DAE=BAF(2)连接OC直线
20、m与O相切于点CADmOA=OC(3)连接OC直线m与O相切于点C设半径OC=OB=r在中,则:解得:r=2,即OC=r=2【点睛】本题考查了圆切线、内接四边形的性质,以及解直角三角形的应用,扇形面积求法,解答此题的关键是掌握圆的性质4、(1)见解析;(2)【解析】【分析】(1)根据平行四边形性质得,推,再根据,证三角形相似,用的是两角对应相等两个三角形相似;(2)先根据,推,在直角三角形中,用三角函数求出的长,再根据,得比例线段,把已知的线段代入计算即可【详解】(1)证明:四边形为平行四边形,;(2)解:,解得:【点睛】本题主要考查了相似三角形的判定与性质、平行四边形的性质,解题的关键是熟练
21、应用平行四边形的性质和相似三角形的判断,三角函数的应用与相似比例线段的结合5、(1)AB=13;(2)证明见解析,t=354;存在,t=6【解析】【分析】(1)过A点作BC的垂线,垂足为D,则可求得AD=5,再由勾股定理可得AB长度(2)由APC=APQ+QPC=BAP+ABC,可得QPC=BAP,则可证得,可求得BP以及QC的长度,根据题意列一元一次方程即可过A点作BC的垂线,垂足为D,过Q点作BC垂线,垂足为H,根据题意列方程即可【详解】(1)过A点作BC的垂线,垂足为D在RtABD中,ADBD=tanABC=512,BC=24BD=12BC=12AD=12512=5由勾股定理有AB=BD
22、2+AD2AB=122+52=144+25=169=13(2)APC=APQ+QPC=BAP+ABCQPC=BAP又ABC=ACBABBP=PCQC设运动了t秒,则BP=2t,PC=24-2t,AQ=13-t,QC=t则132t=24-2tt解得t=354过A点作BC的垂线,垂足为D,过Q点作BC垂线,垂足为H,设运动了t秒,则BP=2t,PC=24-2t,AQ=13-t,QC=t,ABC=ACBcosABC=cosACB在RtABD中AB=13,AD=5cosABC=cosACB=513QH=513t当2t=24时运动停止,即0t12sSPQC=12PCQHSPQC=12PC513QCSPQC=12(24-2t)513tSPQC=-513t2+6013t对称轴为t=-b2a=-60132513=6SPQC=-513t2+6013t开口朝下,612,当t=6时面积最大【点睛】本题考查了解直角三角形、勾股定理、一元一次方程的几何动点问题,根据题意列一元一次方程是解题的关键