精选高中数学说课稿合集五篇.docx

上传人:知****量 文档编号:31775028 上传时间:2022-08-08 格式:DOCX 页数:16 大小:24.25KB
返回 下载 相关 举报
精选高中数学说课稿合集五篇.docx_第1页
第1页 / 共16页
精选高中数学说课稿合集五篇.docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《精选高中数学说课稿合集五篇.docx》由会员分享,可在线阅读,更多相关《精选高中数学说课稿合集五篇.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选高中数学说课稿合集五篇精选高中数学说课稿合集五篇 作为一名人民教师,常常需要准备说课稿,借助说课稿我们可以快速提升自己的教学能力。怎样写说课稿才更能起到其作用呢?下面是小编为大家收集的高中数学说课稿5篇,欢迎阅读与收藏。 高中数学说课稿篇1 一、教材分析: 1.教材所处的地位和作用: 本节内容在全书和章节中的作用是:1.3.1柱体、锥体、台体的表面积是高中数学教材数学2第一章空间几何体3节内容。在此之前学生已学习了空间几何体的结构、三视图和直观图为基础,这为过渡到本节的学习起着铺垫作用。本节内容是在空间几何中,占据重要的地位。以及为其他学科和今后的学习打下基础。 2.教育教学目标: 根据上

2、述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标: 知识与能力: (1)了解柱体、锥体、台体的表面积. (2)能用公式求柱体、锥体、台体的表面积。 (3)培养学生空间想象能力和思维能力 过程与方法: 让学生经历几何体的表面积的实际求法,感知几何体的形状,培养学生对数学问题的转化化归能力。 情感、态度与价值观: 通过学习,是学生感受到几何体表面积的求解过程,激发学生探索、创新意识,增强学习积极性。 3.重点,难点以及确定依据: 本着新课程标准,在吃透教材基础上,我确立了如下的教学重点、难点 教学重点:柱,锥,台的表面积公式的推导 教学难点:柱,锥,台展开图与空间几何体的转化 二、教

3、法分析 1.教学手段: 如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用合作探究、小组讨论的教学方法。 2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的探究式讨论教学法。在学生亲自动手去给出各种几何体的表面积的计算方法,特别注重不同解决问题的方法,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相

4、关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。 三.学情分析 我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。 (1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散 (2)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积

5、极性,激发来自学生主体的最有力的动力 最后我来具体谈谈这一堂课的教学过程: 四、教学过程分析 (1)由一段动画视频引入:丰富生动的吸引学生的注意力,调动学生学习积极性 (2)由引入得出本课新的所要探讨的问题几何体的表面积的计算。 (3)探究问题。完全将主动权教给学生,让学生主动去探究,得到解决问题的思路,锻炼学生动手能力,解决实际问题能力。 (4)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。 (5)例题及练习,见学案。 (6)布置作业。 针对学生素质

6、的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高, (7)小结。让学生总结本节课的收获。老师适时总结归纳。 高中数学说课稿篇2 抛物线焦点性质的探索(说课) 一、教材分析 1教材的地位与作用“抛物线焦点的性质”是抛物线的重要性质之一,它是在学生学习抛物线的一般性质的基础上,学习和研究的抛物线有关问题的基本工具之一;本节教材对于培养学生观察、猜想、概括能力和逻辑推理能力具有重要的意义。 2教学目的全日制普通高级中学数学教学大纲第22页“重视现代教育技术的运用”中明确提出:在数学教学过程中,应有意识地利用计算机网络等现代信息技术,认识计算机的智能图形、快速计算、机器证明、自动求

7、解及人机交互等功能在数学教学中的巨大潜力,努力探索在现代信息技术支持下的教学方法、教学模式。设计和组织能吸引学生积极参与的数学活动,支持和鼓励学生运用信息技术学习数学、开展课题研究,改进学习方式,提高学生的自主学习能力和创新意识。因此本人在现行高中新教材(试验修订本必修)数学第二册(上)抛物线这一节内容为背景材料,以多媒体网络教室为场地,以几何画板为教学工具与学习工具,设计了一堂抛物线焦点性质的探索,具体目标如下: (1)知识目标:了解焦点的有关性质;并掌握这些性质的证明方法;体会数形结合思想与分类讨论思想在解决解析几何题中的指导作用 (2)能力目标:使学生学会研究数学问题的基本过程,能够根据

8、条件建立恰当的数学模型;培养辩证唯物主义思想和辩证思维能力(主要包括量变与质变,常量与变量,运动与静止)培养学生通过计算机来自主学习的能力与创新的能力。 (3)情感目标:培养学生不畏困难,勇于钻研、探索、大胆创新的精神,在挫折中成长锻炼,培养学生良好的心理素质和抗挫折能力,通过抛物线焦点性质的探索及证明,使学生得到数学美和创造美的享受。 3教学内容、重点、难点及关键本节安排两节课, 第一节课:主要内容是利用几何画板探索抛物线的有关性质; 第二节课:证明第一节所得到的有关性质。 重点: (1)如何利用几何画板探索、发现抛物线焦点的性质; (2)如何证明这些性质。 难点; (1)如何利用几何画板探

9、索、发现抛物线焦点的性质; (2)如何证明这些性质。 二、教学策略及教法设计 学生在网络教室(每人一机),其中装有几何画板软件及上课系统,每个学生的窗口,其他学生及教师都可以通过教师机切换,从而和其他学生交流,也可以通过网上论坛交流研究结果。 三、网络教学环境设计 学生在网络教室(每人一机)中有几何画板软件,学生通过教师提供的网络,自已阅读,下载有关,利用几何画板的操作、试验、猜想,通过自已的研究获得结论,并互相讨论观察到的现象、交流研究结果。 四、教学过程设计 41使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型问题1回顾一下抛物线的定义,并根据抛物线的定义思考用几何画板如何

10、作出焦点在x轴上的抛物线图象。由于创设了一个创作的几何画板的窗口及网络窗口,学生通过网络学习,得到以上问题的多种作法,以下就其中的一种作法作为探索、研究抛物线焦点性质的基本图形。 高中数学说课稿篇3 一、教材分析 本节是人教A版高中数学必修三第二章统计中的第三节“变量间的相关关系”的第二课时。在上一课时,学生已经懂得根据两个相关变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。这节课是在上一节课的基础上介绍了用线性回归的方法研究两个变量的相关性和最小二乘法的思想。 从全章的内容上看,线性回归方程的建立不仅是本节的难点,也是本章内容的难点之一。线性回归是最简单的回归分析,学好回归分析是

11、学好统计学的重要基础。 二、教学目标 根据课标的要求及前面的分析,结合高二学生的认知特点确定本节课的教学目标如下: 知识与技能: 1.知道最小二乘法和回归分析的思想; 2.能根据线性回归方程系数公式求出回归方程 过程与方法: 经历线性回归分析过程,借助图形计算器得出回归直线,增强数学应用和使用技术的意识。 情感态度与价值观 通过合作学习,养成倾听别人意见和建议的良好品质 三、重点难点分析: 根据目标分析,确定教学重点和难点如下: 教学重点: 1.知道最小二乘法和回归分析的思想; 2会求回归直线 教学难点: 建立回归思想,会求回归直线 四、教学设计 提出问题 理论探究 验证结论 小结提升 应用实

12、践 作业设计 教学环节 内容及说明 创设情境 探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据: 问题与引导设计 师生活动 设计意图 问题1.利用图形计算器作出散点图,并指出上面的两个变量是正相关还是负相关? 教师提问,学生 通过动手操作得 出散点图并回答 以旧“探”新:对旧的知识进行简要的提问复习,为本节课学生能够更好的建构新的知识做好充分的准备;尤其为一些后进生能够顺利的完成本节课的内容提供必要的基础。 教师引导:通过上节课的学习,我们知道散点图是研究两个变量相关关系的一种重要手段。下面,请同学们根据得出的散点图,思考下面的问题2. 问题2.甲同学判断某人年龄在65

13、岁时体内脂肪含量百分比可能为34,乙同学判断可能为25,而丙同学则判断可能为37,你对甲, 乙,丙三个同学的判断有什么看法? 学生能够表达自己的看法。有的学生可能会认为乙同学的判断是错误的;有的学生可能认为甲乙丙三个同学的判断都是对的,答案不唯一 该问题具有探究性、启发性和开放性。鼓励学生大胆表达自己的看法。通过设计该问题,引导学生自己发现问题,注意到散点图中点的分布具有一定规律,体会观测点与回归直线的关系;进而引起学生的对本节课内容的兴趣。 问题3.反思问题,你还可以提出哪些问题吗?小组讨论,看哪个小组提出的问题多 在小组讨论的形式下和比较哪个小组提出的问题多,学生之间会充分的进行交流,提出

14、问题 通过小组讨论比较,调动学生的学习积极性和兴趣,活跃课堂气氛,达到学生自己提出问题的效果,培养学生的学生创新思维和问题意识。 学生可能提出的问题: 为什么甲、丙同学的判断结果正确的可能性较大,而乙同学判断结果正确的可能性较小? 某人年龄在65岁时体内脂肪含量百分比最可能是多少?在其它年龄时呢? 这些样本数据揭示出两个相关变量之间怎样的关系呢? 怎样用数学的方法研究变量之间的相关关系呢?每个问题都是学生“火热的思考”成果 高中数学说课稿篇4 1教材分析 1-1教学内容及包含的知识点 (1)本课内容是高中数学第二册第七章第三节两条直线的位置关系的最后一个内容 (2)包含知识点:点到直线的距离公

15、式和两平行线的距离公式 1-2教材所处地位、作用和前后联系 本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。 可见,本课有承前启后的作用。 1-3教学大纲要求 掌握点到直线的距离公式 1-4高考大纲要求及在高考中的显示形式 掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等

16、。 1-5教学目标及确定依据 教学目标 (1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。 (2)培养学生探究性思维方法和由特殊到一般的研究能力。 (3)认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。 (4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。 确定依据: 中华人民共和国教育部制定的全日制普通高级中学数学教学大纲(20xx年4月第一版),基础教育课程改革纲要(试行),高考考试说明(20xx年) 1-6教学重点、难点、关键 (1)重点:点到直线的距离公式 确定依据:由本节在教材中的地位确定 (2)难点:点到直线的距离

17、公式的推导 确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。 分析“尝试性题组”解题思路可突破难点 (3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。 2教法 2-1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。 确定依据: (1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,

18、阶段渐进性原则。 (2)事物之间相互联系,相互转化的辩证法思想。 2-2教具:多媒体和黑板等传统教具 3.学法 31发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。 一句话:还课堂以生命力,还学生以活力。 32学情: (1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与

19、方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。 (2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。 (3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。 3-3学具:直尺、三角板 3.教学程序 时,此时又怎样求点A到直线 的距离呢? 生:定性回答 点明课题,使学生明确学习目标。 创设“不愤不启,不悱不发”的学习情景。 练习 比较 发现 归纳 讨论 的距离为d (1)A(2,4),

20、:x=3,d=_ (2)A(2,4), :y=3,d=_ (3)A(2,4), :xy=0,d=_ 尝试性题组告诉学生下手不难,还负责特例检验,从而增强学生参与的信心。 请三个同学上黑板板演 师:请这三位同学分别说说自己的解题思路。 生:回答 教学机智:应沉淀为三种思路:一,根据定义转化为定点到垂足的距离;二,利用等积法转化为直角三角形中三个顶点之间的距离;三,利用直角三角形中的边角关系。 视回答的情况,老师进行肯定、修正或补充提问:“还有其他不同的思路吗”。 说解题思路,一是让学生清晰有条理的表达自己的思考过程,二是其求解过程提示了证明的途径(根据定义或画坐标线时正好交出一个直角三角形) 师

21、:很好,刚才我们解决了定点到特殊直线的距离问题,那么,点P(x0,y0)到一般直线 :Ax+By+C=0(A,B0)的距离又怎样求? 教学机智:如学生反应不大,则补充提问:上面三个题的解题思路对这个问题有启示吗? 生:方案一:根据定义 方案二:根据等积法 方案三: 设置此问,一是使学生的认知由特殊向一般转化,发现可能的方法,二是让学生体验数学活动充满着探索和创造,感受数学的生机和乐趣。 师生一起进行比较,锁定方案二进行推证。 “师生共作”体现新型师生观,且/时,又怎样求这两线的距离? 生:计算得线线距离公式 师:板书点到直线的距离公式,两平行线间距离公式 “没有新知识,新知识均是旧知识的组合”

22、,创设此问可发挥学生的创造性,增加学生的成就感。 反思小结 经验共享 (六分钟) 师:通过以上的学习,你有哪些收获?(知识,能力,情感)。有哪些疑问?谁能答这些疑问? 生:讨论,回答。 对本节课用到的技能,数学思维方法等进行小结,使学生对本节知识有一个整体的认识。 共同进步,各取所长。 练习 (五分钟) P53练习1,2,3 熟练的用公式来求点线距离和线线距离。 再度延伸 (一分钟) 探索其他推导方法 “带着问题进课堂,带着更多的问题出课堂”,让学生真正学会学习。 4.教学评价 学生完成反思性学习报告,书写要求: (1)整理知识结构 (2)总结所学到的基本知识,技能和数学思想方法 (3)总结在

23、学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因 (4)谈谈你对老师教法的建议和要求。 作用: (1)通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。 (2)报告的写作本身就是一种创造性活动。 (3)及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。 5.板书设计 (略) 6.教学的反思总结 心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。 高中数学说课稿篇5 今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节棱锥的第一课时:

24、棱锥的概念和性质。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。 一、说教材 1、本节在教材中的地位和作用: 本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。 2.教学目标确定: (1)能力训练要求 使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。 使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。 (2)德育渗透目标 培养学生善于通过观察分析实

25、物形状到归纳其性质的能力。 提高学生对事物的感性认识到理性认识的能力。 培养学生“理论源于实践,用于实践”的观点。 3.教学重点、难点确定: 重点:1.棱锥的截面性质定理2.正棱锥的性质。 难点:培养学生善于比较,从比较中发现事物与事物的区别。 二、说教学方法和手段 1、教法: “以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。 在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。 2、教学手段: 根据教学大纲中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析

26、讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。 三、说学法: 这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。 四、学程序: 复习引入新课 1.棱柱的性质: (1)侧棱都相等,侧面是平行四边形 (2)两个底面与平行于底面的截面是全

27、等的多边形 (3)过不相邻的两条侧棱的截面是平行四边形 2.几个重要的四棱柱: 平行六面体、直平行六面体、长方体、正方体 思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢? 讲授新课 1、棱锥的基本概念 (1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念 (2).棱锥的表示方法、分类 2、棱锥的性质 (1).截面性质定理: 如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比 已知:如图(略),在棱锥S-AC中,SH是高,截面ABCDE平行于底面,并与SH交于H。 证明:(略) 引申:如果棱锥被平行于底面的平

28、面所截,则截得的小棱锥与已知棱锥 的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。 (2).正棱锥的定义及基本性质: 正棱锥的定义: 底面是正多边形 顶点在底面的射影是底面的中心 各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高; 棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形; 棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形 引申: 正棱锥的侧棱与底面所成的角都相等; 正棱锥的侧面与底面所成的二面角相等; (3)正棱锥的各元素间的关系 下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本图9-74(略)正棱锥中的棱

29、锥S-OBM从整个图中拿出来研究。 引申: 观察图中三棱锥S-OBM的侧面三角形状有何特点? (可证得SOM=SOB=SMB=OMB=900,所以侧面全是直角三角形。) 若分别假设正棱锥的高SO=h,斜高SM=h,底面边长的一半BM=a/2,底面正多边形外接圆半径OB=R,内切圆半径OM=r,侧棱SB=L,侧面与底面的二面角SMO=,侧棱与底面组成的角SBO=,BOM=1800/n(n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。 (课后思考题) 例题分析 例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是() A三棱锥B四棱锥C五棱锥D六棱锥 (答案:D) 例2

30、如图已知正三棱锥S-ABC的高SO=h,斜高SM=L,求经过SO的中点且平行于底面的截面ABC的面积。 解析及图略 例3已知正四棱锥的棱长和底面边长均为a,求: (1)侧面与底面所成角的余弦(2)相邻两个侧面所成角的余弦 解析及图略 课堂练习 1、知一个正六棱锥的高为h,侧棱为L,求它的底面边长和斜高。 解析及图略 2、锥被平行与底面的平面所截,若截面面积与底面面积之比为12,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。 解析及图略 课堂小结 一:棱锥的基本概念及表示、分类 二:棱锥的性质 截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截

31、得的棱锥的高与已知棱锥的高的平方比 引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。 2.正棱锥的定义及基本性质 正棱锥的定义: 底面是正多边形 顶点在底面的射影是底面的中心 (1)各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高 相等,它们叫做正棱锥的斜高; (2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形 引申:正棱锥的侧棱与底面所成的角都相等; 正棱锥的侧面与底面所成的二面角相等; 正棱锥中各元素间的关系 课后作业 1:课本P52习题9.8:2、4 2:课时训练:训练一 16

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁