《精选高中数学说课稿合集七篇.docx》由会员分享,可在线阅读,更多相关《精选高中数学说课稿合集七篇.docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选高中数学说课稿合集七篇精选高中数学说课稿合集七篇 作为一位不辞辛劳的人民教师,时常会需要准备好说课稿,说课稿有助于教学取得成功、提高教学质量。我们该怎么去写说课稿呢?下面是小编为大家收集的高中数学说课稿7篇,欢迎阅读与收藏。 高中数学说课稿篇1 一、说教材 1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。 2.学情分析:
2、对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。 二、说教学目标 根据本人对数学课程标准的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为: 1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。 2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。 三、说教法 本节课从知识结构呈现的角
3、度看,为了实现教学目标,我建立了“创设情境建立模型解释知识应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。 四、说学法 我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。 好学教育:
4、 因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。 高中数学说课稿篇2 一、教材分析 1、教材所处的地位和作用 奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。 奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。 2、学情分析 从学生的认知基础看,
5、学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。 从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、 3、教学目标 基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标: 1、能判断一些简单函数的奇偶性。 2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。 经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。 通过自主探索,体会数形结合的思想,感受数学的对称美。 从课堂反应看,基本上达到了预期效果
6、。 4、教学重点和难点 重点:函数奇偶性的概念和几何意义。 几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。 难点:奇偶性概念的数学化提炼过程。 由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定
7、的困难。因此我把奇偶性概念的数学化提炼过程设计为本节课的难点。 二、教法与学法分析 1、教法 根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。从课堂反应看,基本上达到了预期效果。 2、学法 让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。 三、教学过程 具体的教学过程是师生互动交流
8、的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。 (一)设疑导入、观图激趣 由于本节内容相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。 用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。 (二)指导观察、形成概念 在这一环节中共设计了2个探究活动。 探究1、2数学中对称的形式也很多,这节课我们就
9、以函数和=x以及和为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律?引导学生先把它们具体化,再用数学符号表示。借助课件演示(令比较得出等式,再令,得到)让学生发现两个函数的对称性反应到函数值上具有的特性,()然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个都成立。最后给出偶函数(奇函数)定义(板书)。 在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。
10、 (三)学生探索、领会定义 探究3下列函数图象具有奇偶性吗? 设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是-定义域关于原点对称。(突破了本节课的难点) (四)知识应用,巩固提高 在这一环节我设计了4道题 例1判断下列函数的奇偶性 选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。 例1设计意图是归纳出判断奇偶性的步骤: (1)先求定义域,看是否关于原点对称; (2)再判断f(-x)=-f(x)还是f(-x)=f(x)。 例2判断下列函数的奇偶性: 例3判断下列函数的奇偶性: 例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型? 例4(1)判断
11、函数的奇偶性。 (2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗? 例4设计意图加强函数奇偶性的几何意义的应用。 在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。 (五)总结反馈 在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。 在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提
12、高数学综合能力的很重要的策略。 (六)分层作业,学以致用 必做题:课本第36页练习第1-2题。 选做题:课本第39页习题1、3A组第6题。 思考题:课本第39页习题1、3B组第3题。 设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。 高中数学说课稿篇3 尊敬的各位评委、各位老师大家好!我说课的题目是函数的单调性,我将从四个方面来阐述我对这节课的设计 一、教材分析 1、教材的地位和作用 (1)本节课主要对函数单调性的学习; (2)它是在学习函数概念的基础上进行学习的,同时又为基
13、本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写) (3)它是历年高考的热点、难点问题 (根据具体的课题改变就行了,如果不是热点难点问题就删掉) 2、教材重、难点 重点:函数单调性的定义 难点:函数单调性的证明 重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有) 二、教学目标 知识目标:(1)函数单调性的定义 (2)函数单调性的证明 能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想 情感目标:培养学生勇于探索的精神和善于合作的意识 (这样的教
14、学目标设计更注重教学过程和情感体验,立足教学目标多元化) 三、教法学法分析 1、教法分析 “教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法 2、学法分析 “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。 (前三部分用时控制在三分钟以内,
15、可适当删减) 四、教学过程 1、以旧引新,导入新知 通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x2的图像是一个曲线,在(-,0)上是下降的,而在(0,+)上是上升的。(适当添加手势,这样看起来更自然) 2、创设问题,探索新知 紧接着提出问题,你能用二次函数f(x)=x2表达式来描述函数在(-,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。 让学生模仿刚才的表
16、述法来描述二次函数f(x)=x2在(0,+)的图像,并找个别同学起来作答,规范学生的数学用语。 让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。 3、例题讲解,学以致用 例1主要是对函数单调区间的巩固运用,通过观察函数定义在(5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式 例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。 例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要
17、采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。 学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。 4、归纳小结 本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。 5、作业布置 为了让学生学习不同的数学,我将采用分层布置作业的方式:一组习题1.3A组1、2、3,二组习题1.3A组2、3、B组1、2 6、板书设计 我力求简洁明了地概括本节课的学习要点,让学生一目
18、了然。 (这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动) 五、教学评价 本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。 高中数学说课稿篇4 一、教材分析 1、教材内容 本节课是苏教版第二章函数概念和基本初等函数213函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题 2、教材所处地位、作用 函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质通过对本节课的学习,让学生领会
19、函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题通过上述活动,加深对函数本质的认识函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法 3、教学目标 (1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性 的方法; (2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和
20、单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力 (3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质 4、重点与难点 教学重点(1)函数单调性的概念; (2)运用函数单调性的定义判断一些函数的单调性 教学难点(1)函数单调性的知识形成; (2)利用函数图象、单调性的定义判断和证明函数的单调性 二、教法分析与学法指导 本节课是一节较为抽象的数学概念课,因此,教法上要注意: 1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生
21、求知欲,调动了学生主体参与的积极性 2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决 3、在鼓励学生主体参与的同时,不可忽视教师的主导作用具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达 4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性 在学法上: 1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力 2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃 三、教学过程 教学 环节 教学过程 设计意图
22、 问题 情境 (播放中央电视台天气预报的音乐) 满足在定义域上的单调性的讨论 2、重视学生发现的过程如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程 3、重视学生的动手实践过程通过对定义的解读、巩固,让学生动手去实践运用定义 4、重视课堂问题的设计通过对问题的设计,引导学生解决问题 高中数学说课稿篇5 各位领导、专家、同仁:您们好! 我说课的内容是高中数学第二册(上册)第七章直线和圆的方程中的第六节“曲线和方程”的第一课时,下面我的说课将从以下几个方面进行阐述: 一、教材分析 教材的地位和作用 “曲线和方
23、程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”! 根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。 二、教学目标
24、根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下: 知识目标: 1、了解曲线上的点与方程的解之间的一一对应关系; 2、初步领会“曲线的方程”与“方程的曲线”的概念; 3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论; 4、强化“形”与“数”一致并相互转化的思想方法。 能力目标: 1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识; 2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点; 3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法
25、,提高思维品质,发展应用意识。 情感目标: 1、通过概念的引入,让学生感受从特殊到一般的认知规律; 2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。 三、重难点突破 “曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出
26、定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。 怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的方程。通过这些例题让学生再一次体会“二者”缺一不可。 四、学情分析 此前,学生已知,在建立了直角坐标系后平面内的点
27、和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。 五、教法分析 新课程强调教师要调
28、整自己的角色,改变传统的教育方式,教师要由传统意义上的知识的传授者和学生的管理者,转变为学生发展的促进者和帮助者,简单的教书匠转变为实践的研究者,或研究的实践者,在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶,基于此,本节课遵循了概念学习的四个基本步骤,重点采用了问题探究和启发式相结合的教学方法。 从实例、到类比、到推广的问题探究,它对激发学生学习兴趣,培养学习能力都十分有利。启发引导学生得出概念,深化概念,并应用它去讨论、研究和解决问题。在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题的能力打下了基础。 利用多媒体辅助教学,节省了时间,增
29、大了信息量,增强了直观形象性。 六、学法分析 基础教育课程改革要求加强学习方式的改变,提倡学习方式的多样化,各学科课程通过引导学生主动参与,亲身实践,独立思考,合作探究,发展学生搜集处理信息的能力,获取新知识的能力,分析和解决问题的能力,以及交流合作的能力,基于此,本节课从实例引入类比推广得概念概念挖掘深化具体应用作业中的研究性问题的思考,始终让学生主动参与,亲身实践,独立思考,与合作探究相结合,在生生合作,师生互动中,使学生真正成为知识的发现者和知识的研究者。 七、教学过程分析 1、感性认识阶段以旧带新、提出课题 高中数学说课稿篇6 尊敬的各位专家、评委: 大家好! 我是卢龙县木井中学数学教
30、师xx,我今天说课的题目是:人教A版普通高中课程标准实验教科书数学必修5第一章第一节的第一课时正弦定理,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。 一、教材分析 “解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要
31、的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验“观察猜想证明应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。 二、学情分析 我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。 三、教学目标 1、知识和技能:在创设的问题情境中,引导学生发现
32、正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。 过程与方法:学生参与解题方案的探索,尝试应用观察猜想证明应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。 情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。 2、教学重点、难点 教学重点:正弦定理的发现与证明;正弦定理
33、的简单应用。 教学难点:正弦定理证明及应用。 四、教学方法与手段 为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。 五、教学过程 为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程: (一)创设情景,揭示课题 问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这
34、美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢? 1671年两个法国天文学家首次测出了地月之间的距离大约为xxxxkm,你知道他们当时是怎样测出这个距离的吗? 问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题,其实并不难,只要你学好本章内容即可掌握其原理。(板书课题解三角形) 设计说明引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。 (二)特殊入手,发现规律 问题3:在初中,我们已经学习了锐角三角函数和解直角三
35、角形这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在RtABC中sinA=,sinB=,sinC=,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗? 引导启发学生发现特殊情形下的正弦定理 (三)类比归纳,严格证明 问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的RtABC不小心写成了锐角ABC,其它没有变,你说这个结论还成立吗? 设计说明此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果
36、没有用向量的学生,教师引导提示学生能否用向量完成证明。 问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角ABC改为角钝角ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。) 设计说明放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部
37、分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。 问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容) 教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔威发940-998首先发现与证明的。中亚细亚人阿尔比鲁尼973-1048给三角形的正弦定理
38、作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。 设计说明通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。 (四)强化理解,简单应用 下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。 设计说明让学生看看书,放慢节奏,有利
39、于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。 我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢?我们先小试牛刀,来一个简单的问题: 问题7:(教材例题1)ABC中,已知A=30,B=75,a=40cm,解三角形。 (本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评) 设计说明充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。 强化练习 让全体同学限时完成教材4
40、页练习第一题,找两位同学上黑板。 问题8:(教材例题2)在ABC中a=20cm,b=28cm,A=30,解三角形。 设计说明例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:解三角形的进一步讨论 (五)小结归纳,深化拓展 1、正弦定理 2、正弦定理的证明方法 3、正弦定理的应用 4、涉及的数学思想和方法。 设计说明师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。 (六)布置作业,巩固提高 1、教材10页习题1.1
41、A组第1题。 2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。 证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB,c=2RsinC 设计说明对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。 高中数学说课稿篇7 1、本节教材的地位与作用 本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间a,b上的连续函数,那么f(x)在闭区间a,b上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学
42、生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义。 2、教学重点 会求闭区间上连续开区间上可导的函数的最值。 3、教学难点 高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法。 4、教学关键 本节课突破难点的关键是:理解方程f(x)=0的解,包含有指定区间内全部可能的极值点。 根据本节教
43、材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: 1、知识和技能目标 (1)理解函数的最值与极值的区别和联系。 (2)进一步明确闭区间a,b上的连续函数f(x),在a,b上必有最大、最小值。 (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤。 2、过程和方法目标 (1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值。 (2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处。 (3)会求闭区间上连续,开区间内可导的函数的最大、最小值。 3、情感和价值目标 (1)认识事物之间的的区别和联系。 (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题。 (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用。 本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输。为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学。