精品解析2021-2022学年北师大版七年级数学下册第一章整式的乘除专项训练试题(精选).docx

上传人:可****阿 文档编号:30772061 上传时间:2022-08-06 格式:DOCX 页数:16 大小:775.61KB
返回 下载 相关 举报
精品解析2021-2022学年北师大版七年级数学下册第一章整式的乘除专项训练试题(精选).docx_第1页
第1页 / 共16页
精品解析2021-2022学年北师大版七年级数学下册第一章整式的乘除专项训练试题(精选).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《精品解析2021-2022学年北师大版七年级数学下册第一章整式的乘除专项训练试题(精选).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年北师大版七年级数学下册第一章整式的乘除专项训练试题(精选).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版七年级数学下册第一章整式的乘除专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算中,结果正确的是( )ABCD2、下列计算正确的是( )A2a3b5abBx8x2x6C(ab3)2a

2、b6D(x2)2x243、已知一个正方形的边长为,则该正方形的面积为( )ABCD4、下列运算正确的是()A(a2)3a6Ba2a3a6Ca7aa7D(2a2)38a65、下列计算正确的是( )ABCD6、若与的乘积中不含x的一次项,则m的值为( )AB0C2D47、下列各式中,能用平方差公式计算的是()A(a+b)(ab)B(a+b)(ab)C(a+b)(ad)D(a+b)(2ab)8、若,则的值为( )A5B2C10D无法计算9、下列各式中,计算结果为x10的是()Ax5+x5Bx2x5Cx20x2D(x5)210、要使是完全平方式,那么的值是( )ABCD第卷(非选择题 70分)二、填空

3、题(5小题,每小题4分,共计20分)1、如图,用大小相等的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,拼第3个正方形需要16个小正方形按照这样的方法拼成的第个正方形比第个正方形多_个小正方形2、已知,则_3、长方形的长为,宽为,那么它的面积为_4、如果x2mx81是一个完全平方式,那么m的值为_5、已知a2mn2,am3,则an的值是 _三、解答题(5小题,每小题10分,共计50分)1、计算:(1)(2x3y)(2x3y)(x2y)(4xy)(2)(x3)(3x4)(x2)22、计算:(1);(2)3、计算:(1);(2)4、(教材呈现)人教版八年级上册

4、数学教材第112页的第7题:已知,求的值(例题讲解)老师讲解了这道题的两种方法:方法一方法二,(方法运用)请你参照上面两种解法,解答以下问题(1)已知,求的值;(2)已知,求的值(拓展提升)如图,在六边形中,对角线和相交于点G,当四边形和四边形都为正方形时,若,正方形和正方形的面积和为36,直接写出阴影部分的面积5、(1)数学课堂上老师留了道数学题, 如图1,用式子表示空白部分的面积甲,乙,丙,丁4名同学表示的式子是:甲:乙:丙:丁:4名同学中正确的学生是_;(填“甲”,“乙”,“丙”,“丁”)(2)如图2,有一块长为米,宽为米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化,已知

5、两条道路的宽分别为米和米,求绿地的面积(用含a,b的式子来表示)-参考答案-一、单选题1、C【分析】根据整式乘法的法则及幂的乘方法则、同底数幂除法法则依次判断【详解】解:A、x2,故该项不符合题意,B、,故该项不符合题意,C、,故该项符合题意,D、,故该项不符合题意,故选:C【点睛】此题考查了整式的计算法则,正确掌握整式乘法的法则及幂的乘方法则、同底数幂除法法则是解题的关键2、B【分析】由相关运算法则计算判断即可【详解】2a和3b不是同类项,无法计算,与题意不符,故错误; x8x2x6,与题意相符,故正确;(ab3)2a2b6,与题意不符,故错误;(x2)2x2+2x+4,与题意不符,故错误故

6、选:B【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键3、A【分析】先根据正方形的面积公式列式,然后再根据完全平方公式计算即可【详解】解:该正方形的面积为(a+1)2=a2+2a+1故选:A【点睛】本题主要考查列代数式、完全平方公式等知识点,灵活运用完全平方公式成为解答本题的关键4、A【分析】根据同底数幂的乘除运算、幂的乘方、积的乘方可直接进行排除选项【详解】解:A、,原选项正确,故符合题意;B、,原选项错误,故不符合题意;C、,原选项错误,故不符合题意;D、,原选项错误,故不符合题意;故选A【点睛】本题主要考查同底数幂的乘除运算、幂的乘方

7、、积的乘方,熟练掌握同底数幂的乘除运算、幂的乘方、积的乘方是解题的关键5、B【分析】由题意直接依据幂的乘方和积的乘方以及同底数幂的乘法逐项进行计算判断即可.【详解】解:A. ,此选项计算错误;B. ,此选项计算正确;C. ,此选项计算错误;D. ,此选项计算错误.故选:B.【点睛】本题考查整式的乘法,熟练掌握幂的乘方和积的乘方以及同底数幂的乘法运算法则是解题的关键.6、C【分析】直接利用多项式乘以多项式运算法则计算,再根据条件可得,再解得出答案【详解】解:,乘积中不含的一次项,解得:,故选:C【点睛】本题主要考查了多项式乘以多项式运算,解题的关键是正确掌握相关运算法则7、B【分析】根据平方差公

8、式(a+b)(ab)a2b2对各选项分别进行判断【详解】解:A、(a+b)(ab)(a+b)(a+b)两项都相同,不能用平方差公式计算故本选项不符合题意;B、(a+b)(ab)存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;C、(a+b)(ad)中存在相同项,没有相反项,不能用平方差公式计算故本选项不符合题意;D、(a+b)(2ab)中存在相反项,没有相同项,不能用平方差公式计算故本选项不符合题意;故选:B【点睛】本题考查了平方差公式运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方8、A【分析】利用平方差公式:进行求解即可【详解】解:,故选

9、A【点睛】本题主要考查了平方差公式,熟知平方差公式是解题的关键9、D【分析】利用合并同类项的法则,同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则对各项进行运算即可【详解】解:A、x5+x52x5,故A不符合题意;B、x2x5x7,故B不符合题意;C、x20x2x18,故C不符合题意;D、(x5)2x10,故D符合题意;故选D【点睛】本题主要考查了合并同类项,同底数幂乘法,同底数幂除法,幂的乘方,熟知相关计算法则是解题的关键10、A【分析】根据完全平方公式:进行求解即可【详解】是完全平方式,解得:,故选:A【点睛】本题考查了完全平方式,解题的关键是掌握常数项是一次项系数一半的平方二、

10、填空题1、【分析】首先根据图形中小正方形的个数规律得出变化规律,进而得出答案【详解】解:第一个图形有22=4个小正方形组成,第二个图形有32=9个小正方形组成,第三个图形有42=16个小正方形组成,第(n-1)个图形有n2个小正方形组成,第n个图形有(n+1)2个小正方形组成,故答案为:2n+1【点睛】此题主要考查了图形的规律型问题,完全平方公式,根据图形得出小正方形的变化规律是解题关键2、32【分析】根据幂的乘方进行解答即可【详解】解:由2x+5y-3=2可得:2x+5y=5,所以4x32y=22x+5y=25=32,故答案为:32【点睛】本题考查幂的乘方,关键是根据幂的乘方法则解答3、【分

11、析】结合题意,根据整式乘法、合并同类项性质计算,即可得到答案【详解】根据题意,得:故答案为:【点睛】本题考查了整式运算的知识;解题的关键是熟练掌握整式乘法的性质,从而完成求解4、18或-18【分析】根据两个完全平方公式可得:这里首末两项是x和9的平方,那么中间项为加上或减去x和9的乘积的2倍,由此即可得出【详解】解:是完全平方式,解得:,故答案为:18或-18【点睛】本题主要考查完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,熟练掌握运用完全平方公式是解题关键5、【分析】根据同底数幂的运算法则及幂的乘方即可求出答案【详解】解:,故答案为:【点睛】题目主要考查

12、同底数幂的除法及幂的乘方,熟练掌握运算法则,学会变形是解题关键三、解答题1、(1)7xy7y2(2)2x29x+8【分析】(1)根据整式的乘法运算法则及乘法公式即可化简求解;(2)根据整式的乘法运算法则及乘法公式即可化简求解【详解】(1)(2x+3y)(2x3y)(x2y)(4x+y)(2x)2(3y)2(4x2+xy8xy2y2)4x29y24x2xy+8xy+2y27xy7y2(2)解:原式3x29x4x+12(x24x+4)3x213x+12x2+4x42x29x+8【点睛】此题主要考查整式的乘法运算,解题的关键是熟知其运算法则及公式的运用2、(1)(2)【分析】(1)先计算乘方,再计算

13、除法,最后合并,即可求解;(2)先算乘方,再算除法,即可求解(1)解:原式;(2)原式【点睛】本题主要考查了幂的混合运算,多项式除以单项式,熟练掌握幂的混合运算法则,多项式除以单项式法则是解题的关键3、(1)20x3y2;(2)6a8【分析】(1)先算积的乘方,然后再利用单项式乘以单项式计算法则进行计算即可;(2)先算同底数幂的乘法、积的乘方和幂的乘方,然后再合并同类项即可(1)解:原式=4x2(5xy2)=20x3y2;(2)解:原式=a8+a8+4a8=6a8【点睛】此题主要考查了单项式乘以单项式,以及幂的乘方、积的乘方、同底数幂的乘法,关键是熟练掌握各计算法则4、(1);(2);拓展提升

14、:阴影部分的面积为14【分析】(1)根据已知例题变换完全平方公式即可得;(2)将两个完全平方公式进行变换即可得; 拓展提升:根据图形可得,结合题意,应用完全平方公式的变形可得,由正方形四条边相等及阴影部分的面积公式,代入求解即可得【详解】解:(1),;(2),;拓展提升:,由图可得:,四边形ABGF和四边形CDEG为正方形,SEGF+SBGC=12EGFG+12CGBG=BGCE=14,阴影部分的面积为14【点睛】题目主要考查完全平方公式的运用及变形,理解题中例题,综合运用两个完全平方公式是解题关键5、(1)丙,丁;(2)【分析】(1)用长方形面积减去小路面积或通过平移把绿地拼成一个长方形,即可列出代数式;(2)类似(1)的方法列出代数式即可【详解】解:(1)长方形的面积为:;两条小路的面积为:和,两条小路重合部分面积为:,故列式为;绿地拼在一起是长方形,两边分别为:,故列式为:;故答案为:丙,丁;(2)根据(1)的方法可求绿地的面积:,【点睛】本题考查了列代数式和整式的运算,解题关键是熟练运用整式运算法则进行计算

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁