《难点解析京改版八年级数学下册第十六章一元二次方程同步练习试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《难点解析京改版八年级数学下册第十六章一元二次方程同步练习试题(含答案解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十六章一元二次方程同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程是一元二次方程的是( )ABCD2、若m是方程2x23x10的一个根,则6m2+9m13的值为()A
2、16B13C10D83、把长为2 m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积设较长一段的长为x m,依题意,可列方程为( )ABCD4、在等式;中,符合一元二次方程概念的是( )ABCD5、某公司今年10月的营业额为2500万元,按计划第十二月的总营业额要达到9100万元,求该公司11;12两个月营业额的月均增长率,设该公司11,12两个月营业额的月均增长率为,则根据题意可列的方程为( )ABCD6、若一元二次方程ax2+bx+c0的系数满足ac0,则方程根的情况是()A没有实数根B有两个不相等的实数根C有两个相等的实数根D无法判断7、把方程化成(a,b为常数)的形式,
3、a,b的值分别是( )A2,7B2,5C,7D,58、将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式根据“降次法”,已知:,且,则的值为( )ABCD9、已知m,n是一元二次方程的两个实数根,则的值为( )A4B3CD10、若方程的一个根为,则的值是( )A7BC4D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知:m、n是方程x2+2x10的两根,则(m2+3m+3)(n2+3n+3)_2、若关于x的方程ax2+bx+c0(a0)满足ab+c0,称此方程为
4、“月亮”方程,已知方程a2x21999ax+10(a0)是“月亮”方程,求a2+1999a+的值为 _3、有一种传染性疾病,蔓延速度极快,据统计,在人群密集的某城市里,通常情况下,每天一人能传染给若干人,现有一人患了这种疾病,两天后共有225人患上此病,则每天一人传染_人4、某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比1月份的利润增加4.2万元,设该产品利润平均每月的增长率为x,则可列方程为_5、下列各数:2,1,0,2,3,是一元二次方程x3x20的根的是_三、解答题(5小题,每小题10分,共计50分)1、已知关于x的一元二次方程有两个实数根,(
5、1)若,求k的值(2)若,求k的取值范围2、已知关于x的方程(m1)x2+2mx+m+30有两个实数根,请求出m的最大整数值3、已知关于x的一元二次方程xmxm10有两个实数根x1,x2(1)求m的取值范围;(2)当x12x226x1x21时,求m的值4、解方程:(1) x(x -2)+ x -2 = 0 (2) x2 - 4x + 1 = 0 (用配方法)5、求证:无论m取任何实数,关于x的方程mx2(3m1)x+2m20恒有实数根-参考答案-一、单选题1、C【分析】判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2【详解】A.有
6、两个未知数,错误;B.不是整式方程,错误;C.符合条件;D.化简以后为,不是二次,错误;故选:C【点睛】本题考查一元二次方程的定义根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程2、则此三角形的周长是1故选:C【点睛】本题考查一元二次方程的解法,三角形三边关系,三角形的周长,掌握一元二次方程的解法,三角形三边关系,三角形的周长是解题关键5A【分析】将m代入2x23x10可得2m23m10,再化简所求代数为6m2+9m13-3(2m23m)13,即可求解【详解】解:m是方程2x23x10的一个根,2m23m10,2m23m1,6
7、m2+9m133(2m23m)13311316,故选:A【点睛】本题考查一元二次方程的解,熟练掌握一元二次方程的解与一元二次方程的关系,灵活变形所求代数式是解题的关键3、A【分析】由题意依据较长一段的长的平方等于较短一段的长与原绳长的积建立方程即可得出答案.【详解】解:设较长一段的长为x m,则较短一段的长为(2-x )m,由题意得:.故选:A.【点睛】本题考查一元二次方程的实际运用,根据题意找出题目蕴含的数量关系是解决问题的关键4、B【分析】根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐个分析判断即可【详解】解:,是一元二次方程,符合题意;,
8、不是方程,不符合题意;,不是整式方程,不符合题意;,是二元一次方程,不符合题意;,是一元一次方程,不符合题意故符合一元二次方程概念的是故选B【点睛】本题考查了一元二次方程定义,掌握一元二次方程定义是解题的关键5、C【分析】根据等量关系第10月的营业额(1+x)2=第12月的营业额列方程即可【详解】解:根据题意,得:,故选:C【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键6、B【分析】判别式b24ac,由于ac0,则ac0,而b20,于是可判断0,然后根据判别式的意义判断根的情况【详解】解:关于x的一元二次方程为ax2+bx+c0,b24ac,ac0,ac0,又b20,0
9、,方程有两个不相等的实数根故选B【点睛】本题主要考查了一元二次方程根的判别式,解题的关键在于能够熟知一元二次方程根的情况与判别式的关系:(1)0,方程有两个不相等的实数根;(2)=0,方程有两个相等的实数根;(3) 0,方程没有实数根7、C【分析】利用配方法将一元二次方程进行化简变形即可得【详解】解:,故选:C【点睛】题目主要考查利用配方法将一元二次方程进行变形,熟练掌握配方法是解题关键8、B【分析】先利用得到,再利用x的一次式表示出,则进行化简,然后解方程,从而得到的值【详解】解:根据题意,;,解得:,;故选:B【点睛】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解所以
10、解高次方程一般要降次,即把它转化成二次方程或一次方程也有的通过因式分解来解通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键9、A【分析】根据方程的系数结合根与系数的关系,即可得出m+n的值,此题得解【详解】解:m、n是一元二次方程的两个实数根,m+n=4故选:A【点睛】本题考查了根与系数的关系,牢记两根之和等于-是解题的关键10、D【分析】将代入方程求解即可【详解】解:将代入可得:,解得:,故选:D【点睛】题目主要考查方程与根的关系,将根代入方程求解是解题关键二、填空题1、7【分析】根据题意得到m+n=-2,mn=-1,m2+2m=1,n2+2n=1,再将
11、(m2+3m+3)(n2+3n+3)变形为(m2+2m+m+3)(n2+2n+n+3),进而得到(m+4)(n+4),进而得到mn+4(m+n)+16,问题得解【详解】解:m、n是方程x2+2x10的两根,m2+2m10 ,n2+2n10,m+n=-2,mn=-1,m2+2m=1,n2+2n=1,(m2+3m+3)(n2+3n+3)=(m2+2m+m+3)(n2+2n+n+3)=(1+m+3)(1+n+3)=(m+4)(n+4)=mn+4m+4n+16=mn+4(m+n)+16=-1+4(-2)+16=7故答案为:7【点睛】本题考查了一元二次方程根的定义,根与系数的关系,熟知一元二次方程根的定
12、义,根与系数的关系,并根据题意将所求代数式变形是解题关键2、-2【分析】根据“月亮”方程的定义得出,变形为代入计算即可【详解】解:方程是“月亮”方程, 故答案为-2【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边都相等的未知数的值是一元二次方程的解利用整体代入的方法计算是解决本题的关键3、14【分析】根据第一天患病的人数为1+1传播的人数,第二天患病的人数为第一天患病的人数传播的人数,再根据等量关系:第一天患病的人数+第二天患病的人数=225,列出方程求解即可【详解】解:设每天一人传染了x人,则依题意得1x(1x)x225,(1x)2225,1x0,1x15,x14答:每天一人传染
13、了14人【点睛】此题考查了一元二次方程的应用,读懂题意,得到两天患病人数的等量关系是解决本题的关键;本题的等量关系是:第一天患病的人数+第二天患病的人数=2254、20(1+x)220+4.2【分析】根据该公司销售该种产品1月份及3月份获得的利润,即可得出关于x的一元二次方程,此题得解【详解】解:依题意得:20(1+x)220+4.2,故答案为:20(1+x)220+4.2【点睛】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键5、-1和-2【分析】直接用因式分解的方法求出一元二次方程的根即可得到答案【详解】解:,解得,-2,-1,0,2,3,中是方程的根的
14、是-2,-1,故答案为:-1和-2【点睛】本题主要考查了解一元二次方程和一元二次方程根的定义,熟知解一元二次方程的方法是解题的关键三、解答题1、(1)或;(2)【分析】(1)根据方程的特点,因式分解法解方程,进而求得的值;(2)根据方程的解,以及,即可求得k的取值范围【详解】解:有实根(1)即解得即或解得或(2)若,则解得【点睛】本题考查了解一元二次方程,求得方程的解是解题的关键2、m的最大整数值为0【分析】根据方程有两个实数根,得到根的判别式大于等于0,确定出m的范围,进而求出最大整数值即可【详解】解:关于x的方程(m1)x2+2mx+m+30有两个实数根,b24ac(2m)24(m1)(m
15、+3)4m2(4m2+8m12)4m24m28m+128m+120,m10,解得:m且m1,则m的最大整数值为0【点睛】本题主要考查了一元二次方程根的判别式的应用,准确计算是解题的关键3、(1)一切实数;(2)7或1【分析】(1)根据判别式的意义得到(m2)20,然后解不等式即可;(2)根据根与系数的关系得到得x1x2m,x1x2m1,利用x12x226x1x21,得到22(m1)6(m1)+1,然后解m的方程可得到满足条件的m的值【详解】解:(1)根据题意得(m)24(m1)0,(m2)20,m取一切实数;(2)根据题意得x1x2m,x1x2m1,x12x226x1x21,(x1x2)22x
16、1x26x1x21,即m22(m1)6(m1)+1,解得m7或m1,m的值为7或1【点睛】本题考查了根与系数的关系以及根的判别式,解答本题的关键是掌握两根之和与两根之积的表达方式4、(1),;(2),【分析】(1)根据因式分解法解方程即可得;(2)利用配方法将等号左边变为完全平方公式,然后开方求解即可【详解】解:(1),或,解得:,;(2),或,解得:,【点睛】题目主要考查解一元二次方程的因式分解法和配方法,熟练运用两种方法是解题关键5、见解析【分析】分两种情况,当m0时,方程为一元一次方程,有一个实数解;当m0时,方程为一元二次方程,由于b2-4ac(m1)20,则可判断方程有两个实数根【详解】证明:当m0时,方程化为x20,解得x2;当m0时,b2-4ac(3m1)24m(2m2)m22m+1(m1)20,关于x的一元二次方程mx2(3m1)x+2m20有两个实数根,综上所述,无论m取任何实数,关于x的方程mx2(3m1)x+2m20恒有实数根【点睛】本题考查了一元一次方程的解,以及一元二次方程根的判别式,分类讨论是解答本题的关键