《知识点详解人教版八年级数学下册第十七章-勾股定理章节练习试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《知识点详解人教版八年级数学下册第十七章-勾股定理章节练习试题(含详细解析).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十七章-勾股定理章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有下列条件:;,其中能确定是直角三角形的是( )ABCD2、下列各组数中,能构成直角三角形的是( )A4,5,
2、6B1,1,C6,8,13D5,12,153、若以下列各组数值作为三角形的三边长,则不能围成直角三角形的是( )A4、6、8B3、4、5C5、12、13D1、3、4、下列各组数中,以它们为边长的线段能构成直角三角形的是( )A1,2,3B1,C4,5,6D12,15,205、以下列各组数为边长,不能构成直角三角形的是( )A3,4,5B,C1.5,2,3D9,12,156、如图,在ABC中,ACB90,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E若AC3,AB5,则BE等于()A2BCD7、如图,点A在点O的北偏西的方向5
3、km处,根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是( )A点B在点A的北偏东方向5km处B点B在点A的北偏东方向5km处C点B在点A的北偏东方向km处D点B在点A的北偏东方向km处8、如图,在RtDFE中,两个阴影正方形的面积分别为SA36,SB100,则直角三角形DFE的另一条直角边EF的长为( )A5B6C8D109、如图,高速公路上有两点A,B相距25km,C,D为两个乡镇,已知DA10km,CB15km,DAAB于点A,CBAB于点B,现需要在AB上建一个高速收费站E,使得C,D两个乡镇到E站的距离相等,则BE的长为( )A10kmB15kmC20kmD25km10、如图,
4、在长方形ABCD中,分别按图中方式放入同样大小的直角三角形纸片如果按图方式摆放,刚好放下4个;如果按图方式摆放,刚好放下3个若BC4a,则按图方式摆放时,剩余部分CF的长为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知RtABC中,ACB90,AC3,BC4,点P是BC边上的一个动点,点B与B是关于直线AP的对称点,当CPB是直角三角形时,BP的长_2、已知在平面直角坐标系中A(2,0)、B(2,0)、C(0,2)点P在x轴上运动,当点P与点A、B、C三点中任意两点构成直角三角形时,点P的坐标为_3、定义:当三角形中一个内角是另一个内角的两倍时
5、,我们称此三角形为“特征三角形”,其中称为“特征角”,若RtABC是特征三角形,A是特征角,BC6,则RtABC的面积等于 _4、直角三角形中,根据勾股定理,已知两边可求第三边: RtABC中,C90,a,b,c分别为内角A,B,C的对边,(1)若已知边a,b,则c_ (2)若已知边a,c,则b _(3)若已知边b,c,则a_5、一个正多边形的边长为6,它的内角和是外角和的2倍,则它的边心距是_三、解答题(5小题,每小题10分,共计50分)1、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图形(1)在图1中,画一个等腰三角形(不含直角),使它的
6、面积为8;(2)在图2中,画一个直角三角形,使它的三边长都是有理数;(3)在图3中,画一个正方形,使它的面积为102、如图,四边形中,(1)连接AC,求AC的长(2)求四边形的面积3、如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两只猴子所经路程都是16m,求树高AB4、如图,在平面直角坐标系中,P(a,b)是三角形ABC的边AB上一点,三角形ABC经平移后点P的对应点为(1)请画出经过上述平移后得到的三角形,并写出点,的坐标;(2)求点到
7、的距离5、已知:如图,有一块RtABC的绿地,量得两直角边AC8m,BC6m现在要将这块绿地扩充成等腰ABD,且扩充部分(ADC)是以8m为直角边长的直角三角形,求扩充后等腰ABD的周长(1)在图1中,当ABAD10m时,ABD的周长为 ;(2)在图2中,当BABD10m时,ABD的周长为 ;(3)在图3中,当DADB时,求ABD的周长-参考答案-一、单选题1、C【分析】由题意根据所给的数据和三角形内角和定理,勾股定理的逆定理分别对每一项进行分析,即可得出答案【详解】解:由题意知,解得,则是直角三角形;,则不是直角三角形;由题意知,解得,则是直角三角形;由题意知,则是直角三角形;故选:C【点睛
8、】本题主要考查直角三角形的判定方法注意掌握如果三角形中有一个角是直角,那么这个三角形是直角三角形;如果一个三角形的三边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形2、B【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可【详解】解:A、524262,不能构成直角三角形,故不符合题意;B、1212()2,能构成直角三角形,故符合题意;C、6282132,不能构成直角三角形,故不符合题意;D、12252152,不能构成直角三角形,故不符合题意故选:B【点睛】本题考查勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键3、A【分析】根据勾
9、股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形如果没有这种关系,这个就不是直角三角形【详解】解:A、42+6282,不符合勾股定理的逆定理,故本选项符合题意;B、32+42=52,符合勾股定理的逆定理,故本选项不符合题意;C、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;D、12+32=,符合勾股定理的逆定理,故本选项符合题意故选:A【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断4、B【分析】根据勾股定理逆定理可知,分
10、别计算选项中两短边的平方和是否等于长边的平方即可【详解】解:、,不能构成三角形,故本选项不符合题意;、,能构成直角三角形,故本选项符合题意;、,不能构成直角三角形,故本选项不符合题意;、,不能构成直角三角形,故本选项不符合题意;故选:【点睛】本题考查了勾股定理逆定理,熟知三角形的三边满足:,那么这个三角形为直角三角形是解题的关键5、C【分析】根据勾股定理的逆定理逐一判断即可【详解】解:32+4252,A可以;,B可以;1.52+2232,C不能;92+122152,D可以,故选:C【点睛】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键6、C【分析】连接EA,根据勾股定理求出B
11、C,根据线段垂直平分线的性质得到EAEB,根据勾股定理列出方程,解方程即可【详解】解:连接EA,ACB90,AC3,AB5,BC4,由作图可知,MN是线段AB的垂直平分线,EAEB,则AC2+CE2AE2,即32+(4BE)2BE2,解得,BE,故选:C【点睛】本题考查了线段垂直平分线的作法和性质、勾股定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键7、D【分析】过A作ACOM交ON于C,作ADON,求出AB及DAB即可得到答案【详解】过A作ACOM交ON于C,作ADON,如图:MON=90,AOC=30,AOM=120,由作图可知,OB平分AOM,AOB=AOM=60,
12、B=30,在RtAOB中,OB=2OA=10,AOC=30,ACO=90,CAO=60,DAB=90-BAC=CAO=60,B在A北偏东60方向km处,故选:D【点睛】本题考查作图-基本作图、方向角、角平分线的作法等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型8、C【分析】根据正方形面积公式可得,然后利用勾股定理求解即可【详解】解:由题意得:,DEF是直角三角形,且DEF=90,故选C【点睛】本题主要考查了以直角三角形三边为边长的图形面积,解题的关键在于能够熟练掌握勾股定理9、A【分析】根据题意设出的长为,再由勾股定理列出方程求解即可【详解】解:设,则,由勾股定理得:在中,在中,由
13、题意可知:,解得:,BE=10km故选A【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键10、A【分析】由题意得出图中,BE=a,图中,BE=a,由勾股定理求出小直角三角形的斜边长为a,进而得出答案【详解】解:BC=4a,图中,BE=a,图中,BE=a,小直角三角形的斜边长为,图中纸盒底部剩余部分CF的长为4a-2a=a;故选:A【点睛】本题考查了矩形的性质以及勾股定理;熟练掌握矩形的性质和勾股定理是解题的关键二、填空题1、1或【分析】根据题意分三种情形:PCB90,CPB90,进而利用勾股定理构建方程求解即可,反证法证明的情形不成立【详解】解:如图1中,当PCB9
14、0时,设PBPBxAC3,CB4,ACB90,AB5,由翻折的性质可知,ABAB5,在RtPCB中,PC2+CB2PB2,(4x)2+22x2,x,PB如图2中,当CPB90,设PBy过点A作ATBP交BP的延长线于点T,则四边形ACPT是矩形,PTAC3,ATCP4y,在RtATB中,AB2AT2+BT2,52(4y)2+(y+3)2,解得y1或0(0舍弃),PB1,若,如图点C与C是关于直线AP的对称点,连接由题意可得若,根据对称性可得,根据平行线之间的距离相等,若,则到的距离等于4而不平行假设不成立综上所述,PB的值为:1或【点睛】本题考查翻折变换以及勾股定理等知识,解题的关键是学会利用
15、参数,构建方程解决问题2、(0,0),(,0),(2,0)【分析】因为点P、A、B在x轴上,所以P、A、B三点不能构成三角形再分RtPAC和TtPBC两种情况进行分析即可【详解】解:点P、A、B在x轴上,P、A、B三点不能构成三角形设点P的坐标为(m,0)当PAC为直角三角形时,APC90,易知点P在原点处坐标为(0,0);ACP90时,如图,ACP90AC2PC2AP2,解得,m,点P的坐标为(,0);当PBC为直角三角形时,BPC90,易知点P在原点处坐标为(0,0);BCP90时,BCP90,COPB,POBO2,点P的坐标为(2,0)综上所述点P的坐标为(0,0),(,0),(2,0)
16、【点睛】本题考查了勾股定理及其逆定理,涉及到了数形结合和分类讨论思想解题的关键是不重复不遗漏的进行分类3、9【分析】分A90或A90,分别画图,根据“特征三角形”的定义即可解决问题【详解】解:如图,若A90,RtABC是特征三角形,A是特征角,BC45,ACABBC3,9;如图,若A90,RtABC是特征三角形,A是特征角,A60,B30,AB2AC,由勾股定理得:,即,AC(负值舍去),故答案为:9或【点睛】本题考查了直角三角形的性质,勾股定理,灵活运用勾股定理是解题的关键4、 【分析】(1)(2)(3)根据勾股定理及题意可直接进行求解【详解】解:(1)若已知边a,b,则根据勾股定理得;(2
17、)若已知边a,c,则根据勾股定理得;(3)若已知边b,c,则根据勾股定理得;故答案为;【点睛】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键5、【分析】先根据多边形的内角和公式以及外角和等于360确定多边形的边数,然后运用勾股定理解答即可【详解】解:根据题意,得(n2)180=3602解得:n6如图:ACB=60,ACD=30,AC=6AD=3CD=故填【点睛】本题主要考查了多边形的内角和与外角和以及勾股定理的应用,根据题意求得正多边形的边数并画出图形成为解答本题的关键三、解答题1、(1)作图见详解;(2)作图见详解;(3)作图见详解【分析】(1)根据题意找出三角形底为4,高为4的三角形即
18、可;(2)根据题意可画出直角边分别为3,4的直角三角形,斜边通过勾股定理计算为5,符合题意;(3)根据题意及正方形面积的特点即可画出边长为的正方形【详解】(1)如图所示,三角形底为4,高为4,面积为8,符合题意,即为所求;(2)如图所示,三角形为所求,直角边分别为3,4,根据勾股定理,斜边为5,符合题意;(3)如图所示,正方形为所求,正方形变长为,面积为:,符合题意【点睛】此题主要考查网格与图形,解题的关键是熟练运用勾股定理2、(1);(2)四边形的面积为36【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出CAD是直角三角形,分别求出ABC和CAD的面积,即可得出答案【详解】解
19、:(1)连接,在中, (2),在中,是直角三角形,四边形的面积 答:AC的长为5, 四边形的面积为36【点睛】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出ABC和CAD的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形3、树高AB为m【分析】设出长为,在中,利用勾股定理,列方程求,最后根据 与AB的长度关系,求出树高AB即可【详解】根据题意表示出AD,AC,BC的长进而利用勾股定理得出AD的长,即可得出答案解:由题意可得出:BD10m,BC6m,设AD xm,则AC(16x)m, 在中,有勾股定理可得:AB2+BC2AC2,即(10+x)
20、2+62(16x)2,解得:x,故AB(m),答:树高AB为m【点睛】本题主要是考查了勾股定理的应用,将实际问题抽象成几何问题求解,并利用勾股定理列方程,求边长,是解决本题的关键4、(1)图见解析,;(2)【分析】(1)利用平移变换的性质,分别作出A,B,C的对应点A1,B1,C1即可;(2)设点A1到B1C1的距离为h利用面积法构建方程求解即可【详解】(1)P(a,b)平移后的对应点是平移规则是向左移动2个单位长度,再向上移动5个单位长度A(1,-1),B(0,-5),C(4,-1);(2)由图形可知设点A1到B1C1的距离为h即设点A1到B1C1的距离为【点睛】本题考查作图-平移变换,三角
21、形的面积等知识,解题的关键是掌握平移变换的性质,学会利用面积法解决求线段问题5、(1)32m;(2)(204)m;(3)m【分析】(1)利用勾股定理得出DC的长,进而求出ABD的周长;(2)利用勾股定理得出AD的长,进而求出ABD的周长;(3)首先利用勾股定理得出DC、AB的长,进而求出ABD的周长【详解】:(1)如图1,AB=AD=10m,ACBD,AC=8m,则ABD的周长为:10+10+6+6=32(m)故答案为32m;(2)如图2,当BA=BD=10m时,则DC=BD-BC=10-6=4(m),故则ABD的周长为:AD+AB+BD=10+4+10=(20+4)m;故答案为(20+4)m;(3)如图3,DA=DB,设DC=xm,则AD=(6+x)m,DC2+AC2=AD2,即x2+82=(6+x)2,解得;x=,AC=8m,BC=6m,故ABD的周长为:AD+BD+AB=2【点睛】此题主要考查了等腰三角形的性质,勾股定理的应用,根据题意熟练应用勾股定理是解题关键