《精品解析2022年最新人教版八年级数学下册第十七章-勾股定理专项测试试题(精选).docx》由会员分享,可在线阅读,更多相关《精品解析2022年最新人教版八年级数学下册第十七章-勾股定理专项测试试题(精选).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十七章-勾股定理专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是,内壁高若这支铅笔长为,则这只铅笔在笔筒外面部分长度不可能
2、的是( )ABCD2、已知直角三角形的斜边长为5cm,周长为12cm,则这个三角形的面积( )ABCD3、如图是由4个全等的直角三角形与1个小正方形拼成的正方形图案已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(ab),则下列说法:a2+b2=25,ab=1,ab=12,a+b=7正确的是()ABCD4、下列四组数中,是勾股数的是( )A5,12,13B,C1,D7,24,265、如图,RtABC中,ABC90,CAB的角平分线交BC于M,ACB的外角平分线与AM交于点D,与AB的延长线交于点N,过D作DECN交CB的延长线于点P,交AN于点E,连接CE并延长交P
3、N于点Q,则下列结论: ADP45;ANCACP;DCED;NQCDPQ;CNDEEP,其中正确的结论有( )个A2B3C4D56、以下列长度的三条线段为边,能组成直角三角形的是( )A4,5,6B8,15,17C2,3,4D1,37、如图,在RtABC中,ABC90,AB6,BC3,BD是ABC的中线,过点C作CPBD于点P,图中阴影部分的面积为( )ABCD8、如图所示,在ABC中,C90,AC2,点D在BC上,ADC2B,AD,则BC的长为()ABC2+D2+9、如图,在数轴上,点O对应数字O,点A对应数字2,过点A作AB垂直于数轴,且AB=4,连接OB,绕点O顺时针旋转OB,使点B落在
4、数轴上的点C处,则点C所表示的数介于( )A2和3之间B3和4之间C4和5之间D5和6之间10、如图,一张直角三角形纸片,两直角边AC=4cm,BC=8cm,将ABC折叠,点B与点A重合,折痕为DE,则DE的长为( )ABCD5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,C90,BC6cm,AC8cm,按图中所示方法将BCD沿BD折叠,使点C落在AB边的C点,那么ADC的面积是_ cm22、如图,在长方形ABCD中,AB3,BC2,E是BC中点,点F是线段AB上一个动点(1)连接DF,则DF+EF的最小值为 _;(2)以EF为斜边向斜上方作等腰
5、RtEFG,点F从点B运动到点A的过程中,AG的最小值为 _3、如图,在每个小正方形的边长为1的网格中,点,均落在格点上()的大小为_(度);()请在如图所示的网格中,用无刻度的直尺,画一条直线把这个六边形分成面积相等的两部分,并简要说明画法(不要求证明)_4、一个直角三角形的两边长为3和6,则第三边的边长是_5、杜老师要画一个三角形,画好后量得三边长分别为7cm,24cm和25cm,则这个三角形_(填“是”或“不是”)直角三角形三、解答题(5小题,每小题10分,共计50分)1、如图,中,M是的中点,垂足为点N,D是的中点,连接,过点B作的垂线交的延长线于点E,若,则的长为_2、如图,在ABC
6、中,ACB=90,B=30,CD是高(1)若AB=8,则AD的长为_;(2)若M,N分别是CA,CB上的动点,点E在斜边AB上,请在图中画出点M,N,使DM+MN+NE最小(不写作法,保留作图痕迹)3、如图,RtABC中,ACB90,分别以AC,BC,AB为边作正方形,面积分别记作S1、S2、S3求证:S1+S2S34、如图,ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2DA2AC2(1)求证:A90;(2)若AB8,AD:BD3:5,求AC的长5、已知RtABC中,AC=BC,ACB90,F为AB边的中点,且DF=EF,DFE90,D是BC上一个动点如图1,当D与C重合时
7、,易证:CD2DB22DF2;(1)当D不与C、B重合时,如图2,CD、DB、DF有怎样的数量关系,请直接写出你的猜想,不需证明(2)当D在BC的延长线上时,如图3,CD、DB、DF有怎样的数量关系,请写出你的猜想,并加以证明-参考答案-一、单选题1、D【分析】当铅笔不垂直于底面放置时,利用勾股定理可求得铅笔露出笔筒部分的最小长度;考虑当铅笔垂直于笔筒底面放置时,铅笔在笔筒外面部分的长度是露出的最大长度;从而可确定答案【详解】当铅笔不垂直于底面放置时,由勾股定理得:,则铅笔在笔筒外部分的最小长度为:1815=3(cm);当铅笔垂直于笔筒底面放置时,铅笔在笔筒外面部分的长度为1812=6(cm)
8、,即铅笔在笔筒外面最长不超过6cm,从而铅笔露出笔筒部分的长度不短于3cm,不超过6cm所以前三项均符合题意,只有D选项不符合题意;故选:D【点睛】本题考查了勾股定理的实际应用,关键是把实际问题抽象成数学问题,分别考虑两种极端情况,问题即解决2、C【分析】设该直角三角形的两条直角边分别为、,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出的值,根据直角三角形的面积公式计算即可【详解】解:设该直角三角形的两条直角边分别为、,根据题意可得:将两边平方,得该直角三角形的面积为故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键3
9、、D【分析】由大的正方形的边长为结合勾股定理可判断,由小的正方形的边长为 结合小正方形的面积可判断,再利用 结合可判断,再由可判断,从而可得答案.【详解】解:由题意得:大正方形的边长为 故符合题意;用a、b表示直角三角形的两直角边(ab),则小正方形的边长为: 则(负值不合题意舍去)故符合题意; 而 故符合题意; (负值不合题意舍去)故符合题意;故选D【点睛】本题考查的是以勾股定理为背景的几何面积问题,同时考查了完全平方公式的应用,熟练的应用完全平方公式的变形求值是解本题的关键.4、A【分析】根据勾股数的定义:有、三个正整数,满足,称为勾股数由此判定即可【详解】解:、,是勾股数,符合题意;、,
10、不是勾股数,不符合题意;、,不是整数,不是勾股数,不符合题意;、,不是勾股数,不符合题意故选:【点睛】本题考查了勾股数,熟练掌握勾股数的定义是解题的关键5、B【分析】根据角平分线的定义,可得 ,再由三角形外角的性质,可得 ,再由DECN,可得ADP=45;延长PD与AC交于点 ,可证得 ,从而得到 ;然后根据ADCADE,可得DC=ED;根据题意可得CQPN,且CDE、CQN、PQE均为等腰直角三角形,从而得到CQPNQE,进而得到 ;作EKCE交CN于点K,可得CEK是等腰直角三角形,从而得到CD=DK,CK=2CD,进而得到EKNCEP,从而得到PE=KN,得到CN= 2DE+EP,即可求
11、解【详解】解:如图,CAB的角平分线交BC于M,ACB的外角平分线与AM交于点D, ,HCD=DAC+ADC,PCH=CAB+ABC=2HCD, ,DECN,CDP=90,ADP=45,故正确;如图,延长PD与AC交于点 ,1=PCD,DECN, , ,ADC=45,DPCN,EDA=CDA=45, , , ,故正确;在ADC和ADE中,ADC=ADE=45,AD=AD,DAC=DAE,ADCADE(ASA),DC=ED,故正确;ABC=90,BNCP,DECN,E为CPN垂心,CQPN,且CDE、CQN、PQE均为等腰直角三角形,PQC=EQN=90,PQ=EQ,CQ=NQ, ,CQPNQE
12、(SAS),CQ=NQ,CQ=EQ+CE=PQ+CE=PQ+CD,PEQ=45, ,故错误;如图,作EKCE交CN于点K,CDE为等腰直角三角形,DCE=45,CKE=45,CE=EK,CEK是等腰直角三角形,CD=DK,CK=2CD,KNE+PCN=CPE+PCN=90,KNE=CPE,PEQ=CKE=45,CEP=EKN=135,在EKN和CEP中,EKN=CEP,KNE=CPE,CE=EK,EKNCEP(AAS),PE=KN,CN=CK+KN=2CD+EP,CN=CK+KN=2DE+EP,故错误正确的有,有3个故选:B【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质的判定,
13、勾股定理等知识,熟练掌握全等三角形的判定和性质,等腰三角形的性质的判定,勾股定理等知识是解题的关键6、B【分析】根据勾股定理的逆定理:若三角形三边分别为a,b,c,满足,则该三角形是以c为斜边的直角三角形,由此依次计算验证即可【详解】解:A、,则长为4,5,6的线段不能组成直角三角形,不合题意;B、,则长为8,15,17的线段能组成直角三角形,符合题意;C、,则长为2,3,4的线段不能组成直角三角形,不合题意;D、,则长为1,3的线段不能组成直角三角形,不合题意;故选:B【点睛】本题考查勾股定理的逆定理,掌握并熟练运用勾股定理的逆定理是解题关键7、C【分析】根据勾股定理求出AC=,由三角形中线
14、的性质得出,从而求出PC的长,再运用勾股定理求出BP的长,得DP的长,进一步可求出图中阴影部分的面积【详解】解:在RtABC中,ABC90,AB6,BC3, 又 BD是ABC的中线, 在RtPBC中,BC3, 故选:C【点睛】本题考查了勾股定理以及中线与三角形面积的关系,求出是解答本题的关键8、B【分析】根据ADC2B,ADCB+BAD判断出DBDA,根据勾股定理求出DC的长,从而求出BC的长【详解】解:ADC2B,ADCB+BAD,BDAB,BDAD,在RtADC中,C90,DC,BCBD+DC故选:B【点睛】本题考查了等角对等边,勾股定理,求得是解题的关键9、C【分析】因为OAB是一个直角
15、三角形,且有OC=OB,所以可求得OB的长度即得C点所表示的数,可判断其大小【详解】解:ABOA在直角三角形OAB中有 OA2+AB2=OB245 又OC=OB点C所表示的数介于4和5之间故选:C【点睛】此题考查勾股定理,无理数的估算,重点就是由垂直而组成的直角三角形的性质,从而解得答案10、B【分析】由翻折易得DB=AD,根据勾股定理即可求得CD长,再在RtBDE中,利用勾股定理即可求解【详解】解析:由折叠可知,AD=BD,DEAB, BE=AB设BD为x,则CD=8-x,C=90,AC=4,BC=8,AC2+BC2=AB2 AB2=42+82=80,AB=,BE=,在RtACD中,AC2+
16、CD2=AD2 ,42+(8-x)2=x2,解得x=5,在RtBDE中,BE2+DE2=BD2,即()2+DE2=52,DE=, 故选:B【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟记翻折前后对应边相等是解题的关键二、填空题1、6【分析】先根据勾股定理得到AB10cm,再根据折叠的性质得到DCDC,BCBC6cm,则AC4cm,在RtADC中利用勾股定理得(8x)2x242,解得x3,然后根据三角形的面积公式计算即可【详解】解:C90,BC6cm,AC8cm,AB10cm,将BCD沿BD折叠,使点C落在AB边的C点,BCDBCD,CBCD90,DCDC,BCBC6cm,ACABBC4c
17、m,设DCxcm,则AD(8x)cm,在RtADC中,AD2AC2CD2,即(8x)2x242,解得x3,ACD90,ADC的面积ACCD436(cm2)故答案为6【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,对应点的连线段被折痕垂直平分也考查了勾股定理2、 #【分析】(1)作点E关于AB的对称点E,连接DE于AB交于F(图中F),则DE+DF最小值是DE的长,进而勾股定理求解即可(2)以EF为斜边向斜上方作等腰RtEFG,过点分别作的垂线,垂直分别为,上取,连接,则,证明即可得点在线段上当时取得最小值,进而勾股定理即可求得的长【详解】解:(1)如图1,作点E关
18、于AB的对称点E,连接DE于AB交于F(图中F),则DE+DF最小值是DE的长,在RtCDE中,CD3,CE3,DE3,故答案是:3;(2)如图,以EF为斜边向斜上方作等腰RtEFG,过点分别作的垂线,垂直分别为,上取,连接,则是等腰直角三角形是的角平分线是等腰直角三角,又点在线段上当时取得最小值是等腰直角三角形故答案是:【点睛】本题考查了勾股定理,等腰直角三角形的性质,角平分线的性质,正确的添加辅助线是解题的关键3、90 连接AE与BF交于点O,连接BD,CE交于点P,过点O,P作直线l 【分析】(1)运用勾股定理求出AF,AB,BF的长,再运用勾股定理逆定理判断出是直角三角形即可得出结论;
19、(2)连接AE与BF交于点O,连接BD,CE交于点P,过点O,P作直线l,则可得结论【详解】解:(1)连接BF,如图,由勾股得, 是直角三角形 故答案为:90;(2)连接AE与BF交于点O,连接BD,CE交于点P,过点O,P作直线l,如图,则直线l即为所求【点睛】本题主要考查了应用与设计作图,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图4、或【分析】由于这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答【详解】解:分两种情况:(1)3、6都为直角边,由勾股定理得,斜边为 ;(2)3为直角边,6为斜边,由勾股定理得,直角边为 故
20、答案为:或【点睛】此题考查的知识点是勾股定理,关键要明确本题利用了分类讨论思想,是数学中常用的一种解题方法5、是【分析】直接利用勾股定理的逆定理进行求解即可【详解】解:三边长分别为7cm,24cm和25cm,这个三角形是直角三角形,故答案为:是【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形三、解答题1、【分析】连接AM,由BDEMDA,可证AM=,由等腰三角形的性质可得ABM=ACM=30,然后根据含30角的三角形的性质和勾股定理求解即可【详解】解:连接AM,AB=AC,M是的中点,AMBC,AMD=DBE=90D
21、是的中点,BD=DM在BDE和MDA中,BDEMDA,AM=AB=AC,ABM=ACM=30,AB=2AM=,BM=ABM=30,MN=,BN=【点睛】本题考查了等腰三角形的性质,30角所对的直角边等于斜边的一半,以及勾股定理等知识,熟练掌握直角三角形的性质是解答本题的关键2、(1);(2)作图见解析【分析】(1)先利用含的直角三角形的性质求解 再利用勾股定理求解 再利用求解,再利用勾股定理求解即可;(2)作点关于的对称点 作关于的对称点,连接 交于 交于 则此时的值最小,即为线段的长.【详解】解:(1) ACB=90,B=30,AB=8, 故答案为: (2)如图,即为所求作的点,【点睛】本题
22、考查的是含的直角三角形的性质,勾股定理的应用,利用轴对称的性质确定线段和取最小值时点的位置,掌握“轴对称的性质”是解本题的关键.3、见解析【分析】在直角三角形ABC中,利用勾股定理求出AC2+BC2的值,根据S1,S2分别表示正方形面积,求出S1+S2的值即可【详解】证明:由题意得S1AC2,S2BC2,S3AB2在RtABC中,ACB90,则由勾股定理,得AC2+BC2AB2, S1+S2S3【点睛】本题考查的是与勾股定理相关的图形面积问题,掌握“勾股定理”是解本题的关键.4、(1)见解析;(2)【分析】(1)利用线段垂直平分线的性质可得CDBD,然后利用勾股定理逆定理可得结论;(2)首先确
23、定BD的长,进而可得CD的长,再利用勾股定理进行计算即可【详解】(1)证明:连接CD,BC的垂直平分线DE分别交AB、BC于点D、E,CDDB,BD2DA2AC2,CD2DA2AC2,CD2AD2+AC2,ACD是直角三角形,且A90;(2)解:AB8,AD:BD3:5,AD3,BD5,DC5,AC【点睛】本题主要考查勾股定理及其逆定理、线段垂直平分线的性质定理,熟练掌握勾股定理及其逆定理、线段垂直平分线的性质定理是解题的关键5、(1)CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2,证明见解析【分析】(1)由已知得,连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可
24、得结论;(2)连接CF,BE,证明得CD=BE,再证明为直角三角形,由勾股定理可得结论【详解】解:(1)CD2+DB2=2DF2 证明:DF=EF,DFE90, 连接CF,BE,如图 ABC是等腰直角三角形,F为斜边AB的中点 ,即 , 又 在和中 , ,CD2+DB2=2DF2 ;(2)CD2+DB2=2DF2 证明:连接CF、BECF=BF,DF=EF又DFC+CFE=EFB+CFB=90DFC=EFBDFCEFB CD=BE,DCF=EBF=135 EBD=EBFFBD=13545=90 在RtDBE中,BE2+DB2=DE2 DE2=2DF2 CD2+DB2=2DF2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题