《精品试卷沪科版九年级数学下册第26章概率初步必考点解析试卷(精选).docx》由会员分享,可在线阅读,更多相关《精品试卷沪科版九年级数学下册第26章概率初步必考点解析试卷(精选).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第26章概率初步必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件中,属于必然事件的是( )A小明买彩票中奖B在一个只有红球的盒子里摸球,摸到了白球C任意抛掷一只纸杯,
2、杯口朝下D三角形两边之和大于第三边2、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A掷一枚正六面体的骰子,出现1点的概率B一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率C抛一枚硬币,出现正面的概率D任意写一个整数,它能被2整除的概率3、下列说法中正确的是( )A一组数据2、3、3、5、5、6,这组数据的众数是3B袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1C为了解长沙市区全年水质情况,适合采用全面调查D画出一个三角形,其内角和是180为必然事件4、不透明的布袋内装有形状、大小、质地
3、完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )ABCD5、乒乓球比赛以11分为1局,水平相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是( )A甲获胜的可能性比乙大B乙获胜的可能性比甲大C甲、乙获胜的可能性一样大D无法判断6、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是()ABCD7、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是( )ABCD8、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物
4、线在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )ABCD9、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中不断重复这一过程,获得数据如下:摸球的次数200300400100016002000摸到黑球的频数14218626066810641333摸到黑球的频率0.71000.62000.65000.66800.66500.6665该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有()个A4B3C2D110、下列说法正确的是()A“买中奖率为
5、的奖券10张,中奖”是必然事件B“汽车累积行驶10000km,从未出现故障”是不可能事件C气象局预报说“明天的降水概率为70%”,意味着明天一定下雨D“经过有交通信号灯的路口,遇到红灯”是随机事件第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个暗箱里放入除颜色外其它都相同的1个红球和11个黄球,搅拌均匀后随机任取一球,取到红球的概率是 _2、某农科所为了深入践行“绿水青山就是金山银山”的理念,大力开展对植物生长的研究,该农科所在相同条件下做某植物种子发芽率的试验,得到的结果如下表所示:种子个数1002003004005006007008009001000发芽种子个
6、数94188281349435531625719812902发芽种子频率(结果保留两位小数)0.940.940.940.870.870.890.890.900.900.90根据频率的稳定性,估计这种植物种子不发芽的概率是_3、某商场开展购物抽奖活动,抽奖箱内有标号分别为1、2、3、4、5、6、7、8、9、10十个质地、大小相同的小球,顾客从中任意摸出一个球,摸出的球的标号是3的倍数就得奖,顾客得奖概率是_4、从,0,1,2这四个数中任取一个数,作为关于x的方程中a的值,则该方程有实数根的概率为_5、过年时包了100个饺子,其中有10个饺子包有幸运果,任意挑选一个饺子,正好是包有幸运果饺子的概率
7、是 _三、解答题(5小题,每小题10分,共计50分)1、在“双减”政策下,某学校自主开设了A书法、B篮球、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等若小明和小刚两位同学各计划选修一门课程,请用列表或树状图求他们两人恰好同时选修球类的概率2、一个不透明的口袋中装有2个红球和1个白球,小球除颜色外其余均相同(1)从口袋中随机摸出一个小球,小球的颜色是白色的概率是 ;(2)从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球请用画树状图(或列表)的方法,求两次摸出的小球颜色相同的概率3、口袋里有除颜色外其它都相同的6个红球和4个白球(1)先从袋子里取出m()个白球,再从袋
8、子里随机摸出一个球,将“摸出红球”记为事件A如果事件A是必然事件,请直接写出m的值如果事件A是随机事件,请直接写出m的值(2)先从袋子中取出m个白球,再放入m个一样的红球并摇匀,摸出一个球是红球的可能性大小是,求m的值4、某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数a6576根据图中提供的信息,解答下列问题:(
9、1)a ,b ;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约 人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率5、有四张大小、质地都相同的不透明卡片,上面分别标有数字1,2,3,4(背面完全相同),现将标有数字的一面朝下,洗匀后从中任意抽取一张,记下数字后放回洗匀,然后再从中任意抽取一张,请用画树状图或列表的方法,求两次抽取的卡片上的数字和等于5的概率-参考答案-一、单选题1、D【分析】根据事件发生的可能性大小判断即可【详解】解;A、小明买彩
10、票中奖是随机事件,不符合题意;B、在一个只有红球的盒子里摸球,摸到了白球是不可能事件,不符合题意;C、任意抛掷一只纸杯,杯口朝下是随机事件,不符合题意;D、三角形两边之和大于第三边是必然事件,符合题意;故选:D【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件2、B【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选
11、项不符合题意;B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率0.33,故此选项符合题意;C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意故选:B【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比同时此题在解答中要用到概率公式3、D【分析】根据统计调查、事件的发生可能性与概率的求解方法即可依次判断【详解】A. 一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;B. 袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;
12、C. 为了解长沙市区全年水质情况,适合采用抽样调查,故错误;D. 画出一个三角形,其内角和是180为必然事件,正确;故选D【点睛】此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解4、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案【详解】解:在不透明的布袋中装有1个白球,2个红球,3个黑球,从袋中任意摸出一个球,摸出的球是红球的概率是:故选:B【点睛】此题考查了概率公式的应用注意概率=所求情况数与总情况数之比5、A【分析】根据事件发生的可能性即可判断【详解】甲已经得了8分,乙只得了2分,甲、乙两人水平相当甲获胜的可能性比乙大故选A
13、【点睛】此题主要考查事件发生的可能性,解题的关键是根据题意进行判断6、B【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:随机掷一枚质地均匀的硬币三次,根据树状图可知至少有两次正面朝上的事件次数为:4,总的情况为8次,故至少有两次正面朝上的事件概率是:故选:B【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图7、C【分析】用3的倍数的个数除以数的总数即为所求的概率【详解】解:1到10的数字中是3的倍数的有3,6,9共3个,卡片上的数字是3的倍数的概率是故选:C【点睛】本题考查概率的求法用到的知识点为:概率所求情况数与总情况数之比8、D
14、【分析】根据题意,判断出中心对称图形的个数,进而即可求得答案【详解】解:线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是故选D【点睛】本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键9、C【分析】该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案【详解】解:该学习小组发现,摸到黑球的频
15、率在一个常数附近摆动,这个常数约为0.667,估计摸出黑球的概率为0.667,则摸出绿球的概率为,袋子中球的总个数为,由此估出黑球个数为,故选:C【点睛】本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率10、D【分析】根据随机事件的定义,对选项中的事件进行判断即可【详解】解:A“买中奖率为的奖券10张,中奖”是随机事件,故原选项判断错误,不合题意;B“汽车累积行驶10000km,从未出现故障”是随机事件,故原选项判断错误,不合题意;
16、C“明天的降水概率为70%”,是说明天降水的可能性是70%,是随机事件,故原选项判断错误,不合题意;D“经过有交通信号灯的路口,遇到红灯”是随机事件,故原选项判断正确,符合题意故选:D【点睛】本题考查了“不可能事件、随机事件、必然事件”的判断,熟知三种事件的定义并根据实际情况准确判断是解题关键二、填空题1、【分析】由题意可知,共有12个球,取到每个球的机会均等,根据概率公式解题【详解】解:P(红球)=故答案为:【点睛】本题考查简单事件的概率,是基础考点,掌握相关知识是解题关键2、0.1【分析】大量重复试验下“发芽种子”的频率可以估计“发芽种子”的概率,据此求解【详解】观察表格发现随着实验次数的
17、增多频率逐渐稳定在0.9附近,故“发芽种子”的概率估计值为0.9这种植物种子不发芽的概率是0.1故答案为:0.1【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率3、【分析】结合题意,首先分析3的倍数的数量,再根据概率公式的性质计算,即可得到答案【详解】根据题意,3的倍数有:3,6,9,共3个数摸出的球的标号是3的倍数的概率是:,即顾客得奖概率是:故答案为:【点睛】本题考查了概率的知识;解题的关键是熟练掌握概率公式,从而完成求解4、【分析】根据一元二次方程的定义,可得,根据一元二次方程的判别式的意义得到,可得,然后根据概率公式求解【详解】解:当
18、且,一元二次方程有实数根且从,0,1,2这四个数中任取一个数,符合条件的结果有所得方程有实数根的概率为故答案为:【点睛】本题考查了列举法求概率,一元二次方程的定义,一元二次方程根的判别式,掌握以上知识是解题的关键5、【分析】直接利用概率公式进行计算即可.【详解】解:过年时包了100个饺子,有10个饺子包有幸运果,任意挑选一个饺子,正好是包有幸运果饺子的概率是 故答案为:【点睛】本题考查的是简单随机事件的概率,熟练的利用概率公式进行计算是解本题的关键;概率的含义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三、解答题1、【分析】画树状图展
19、示所有16种等可能的结果数,再找出他们两人恰好选修球类的结果数,然后根据概率公式求解【详解】解:画树状图为:共有16种等可能的结果数,其中他们两人恰好选修球类的结果数为4,所以他们两人恰好选修球类的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率2、(1);(2)【分析】(1)根据概率公式计算即可;(2)画出树状图即可得解;【详解】(1)根据题意可得,小球的颜色是白色的概率是;故答案是:;(2)根据题意画出树状图如下:则两次摸出的小球颜色相同的概率为【点睛】本题主要考查了概率公式
20、的应用和画树状图求概率,准确画图计算是解题的关键3、(1)4;1或2或3;(2)【分析】(1)根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,即可求解; 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,可得此时有白球 1个或2个或3个,即可求解;(2)根据题意得:所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为 再根据概率公式,即可求解【详解】解:(1)根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球, ; 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白
21、球,也可能为红球, 此时有白球 1个或2个或3个,即m的值为1或2或3;(2)所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为根据题意得:,【点睛】本题主要考查了必然事件和随机事件定义,求概率,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,概率公式是解题的关键4、(1)16,17.5;(2)90;(3)【分析】(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解【详解】解:(1)a512.5%40%16,512.5%7b%,
22、b17.5,故答案为:16,17.5;(2)6006(512.5%)90(人),故答案为:90;(3)如图,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,则P(恰好选到一男一女)【点睛】本题考查的是统计图和扇形统计图的综合运用,用列表或树状图求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键5、【分析】根据题意列出图表得出所有等可能的情况数,找出两次数字和为5的情况数,然后根据概率公式即可得出答案【详解】解:根据题意画图如下:共有16种的可能的情况数,其中两次数字和为5的有4种,则两次数字和为5的概率实数【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比