难点解析北师大版九年级数学下册第二章二次函数专题测试练习题(无超纲).docx

上传人:可****阿 文档编号:30759640 上传时间:2022-08-06 格式:DOCX 页数:33 大小:893.91KB
返回 下载 相关 举报
难点解析北师大版九年级数学下册第二章二次函数专题测试练习题(无超纲).docx_第1页
第1页 / 共33页
难点解析北师大版九年级数学下册第二章二次函数专题测试练习题(无超纲).docx_第2页
第2页 / 共33页
点击查看更多>>
资源描述

《难点解析北师大版九年级数学下册第二章二次函数专题测试练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《难点解析北师大版九年级数学下册第二章二次函数专题测试练习题(无超纲).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第二章二次函数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知:二次函数yax2bxc(a0)的图象如图所示,下列结论中:abc0;2ab0;abc0;当x1时,y随x的

2、增大而增大;a1,其中正确的项是( )ABCD2、已知二次函数,当时,总有,有如下几个结论:当时,;当时,c的最大值为0;当时,y可以取到的最大值为7上述结论中,所有正确结论的序号是( )ABCD3、如图,已知点A、B在反比例函数y(k0,x0)的图象上,点P沿CABO的路线(图中“”所示路线)匀速运动,过点P作PMx轴于点M,设点P的运动时间为t,POM的面积为S,则S关于t的函数图象大致为()ABCD4、在平面直角坐标系xQy中,点,在抛物线上当时,下列说法一定正确的是( )A若,则B若,则C若,则D若,则5、若关于x的二次函数,当时,y随x的增大而减小,且关于y的分式方程有整数解,则符合

3、条件的所有整数a的和为( )A1BC8D46、已知抛物线的解析式为,则这条抛物线的顶点坐标是( )ABCD7、抛物线y(x+2)2+1可由抛物线yx2平移得到,下列平移正确的是()A先向右平移2个单位,再向上平移1个单位B先向右平移2个单位,再向下平移1个单位C先向左平移2个单位,再向上平移1个单位D先向左平移2个单位,再向下平移1个单位8、已知二次函数中的与的部分对应值如下表所示012131根据表中的信息,给出下列四个结论:抛物线的对称轴是直线;抛物线的顶点坐标是;当时,的值为;若点,点两个点都在抛物线上,则其中正确结论的个数是( )A1个B2个C3个D4个9、下列各式中,是的二次函数的是(

4、 )ABCD10、在平面直角坐标系中,将二次函数的图象在轴上方的部分沿轴翻折后,所得新函数的图象如图所示(实线部分)若直线与新函数的图象有3个公共点,则的值是( )A0B-3C-4D-5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、抛物线y(x+1)2+3的顶点坐标是 _2、写出一个开口向下,且对称轴在轴左侧的抛物线的表达式:_3、抛物线的顶点坐标是_4、当0时,将二次函数yx2x(0x)的图象G,绕原点逆时针旋转得到图形G均是某个函数的图象,则的最大值为 _5、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中

5、:c=3;2a+b=0;8a-b+c0;方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_(填序号)三、解答题(5小题,每小题10分,共计50分)1、跳绳是大家喜爱的一项体育运动,当绳子甩到最高处时,其形状视为一条抛物线如图是小涵与小军将绳子甩到最高处时的示意图,已知两人拿绳子的手离地面的高度都为1 m,并且相距4 m,现以两人的站立点所在的直线为x轴,建立如图所示的平面直角坐标系,其中小涵拿绳子的手的坐标是(0,1)身高1.50 m的小丽站在绳子的正下方,且距小涵拿绳子的手1 m时,绳子刚好经过她的头顶(1)求绳子所对应的抛物线的解析式(不要求写自变量的取值范围);(2)身高1.7

6、0m的小兵,能否站在绳子的正下方,让绳子通过他的头顶?(3)身高1.64m的小伟,站在绳子的正下方,他距小涵拿绳子的手s m,为确保绳子通过他的头顶,请直接写出s的取值范围2、某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度(单位:m)与行进的水平距离(单位:m)之间关系的图象如图所示已知篮球出手位置与篮筐的水平距离为4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m(1)图中点表示篮筐,其坐标为_,篮球行进的最高点的坐标为_;(2)求篮球出手时距地面的高度3、抛物线y = ax2 + b

7、x + c(a0)经过点A( - 4,0)和点B(5,)(1)求证:a + b = ;(2)若抛物线经过点C(4,0)点D在抛物线上,且点D在第二象限,并满足ABD = 2BAC,求点D的坐标;直线y = kx - 2(k0)与抛物线交于M,N两点(点M在点N的左侧),点P是直线MN下方的抛物线上的一点,点Q在y轴上,且四边形MPNQ是平行四边形,求点Q的坐标4、在平面直角坐标系中,抛物线与轴交于点、点,与轴交于点,点在第三象限的抛物线上,直线经过点、点,点的横坐标为(1)如图1,求抛物线的解析式;(2)如图2,直线交轴于点,过点作轴,交轴于点,交抛物线于点,过点作,交直线于点,求线段的长;(

8、3)在(2)的条件下,点在上,直线交于点,点在第二象限,连接交于点,连接,点在的延长线上,点在直线上,且点的横坐标为5,连接,求点的纵坐标 5、小明对函数ya|x2+bx|+c(a0)的图象和性质进行了探究根据已知条件,列出了下表:x-1012345y_-30_0-3_(1)根据以上信息求出这个函数的表达式;(2)请将以上表格填全;(3)在给出的平面直角坐标系中,画出这个函数的图象;(4)在同一直角坐标系中画出函数y-x+1的图象,结合函数图象,写出方程a|x2+bx|+c=-x+1的解:-参考答案-一、单选题1、B【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然

9、后根据抛物线与x轴交点的个数及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断【详解】解:由二次函数的图象开口向上可得a0,由抛物线与y轴交于x轴下方可得c0,由对称轴0x1,得出b0,故正确;对称轴0x1,-1,a0,-b0,故错误;把x=-1时代入y=ax2+bx+c=a-b+c,结合图象可以得出y0,即a-b+c0,故错误;由图象得,当x1时,y随x的增大而增大,故正确;由图象知,函数图象过(-1,2),(1,0)两点,代入解析式得, 得, ,故正确正确的项是故选:B【点睛】此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子

10、,如:y=a+b+c,然后根据图象判断其值2、B【分析】当时,根据不等式的性质求解即可证明;当时,二次函数的对称轴为:,分三种情况讨论:当时;当时;当时;分别利用二次函数的的最值问题讨论证明即可得;当,时,分别求出相应的y的值,然后将时,y的值变形为:,将各个不等式代入即可得证【详解】解:当时, ,即,正确;当时,二次函数的对称轴为:,当时,即时,函数在处取得最小值,即,函数在处取得最大值,即,二者矛盾,这种情况不存在;当时,即时,函数在处取得最小值,即,当时,即时,时,;时,不符合题意,舍去;当时,即时,时,;时,不符合题意,舍去;,当时,即时,函数在处取得最小值,即,函数在处取得最大值,即

11、,二者矛盾,这种情况不存在;综上可得:;故错误;当时,且;当时,且;当时,且;当时,当时,y可以取到的最大值为7;正确;故选:B【点睛】题目主要考查二次函数的基本性质及不等式的性质,熟练掌握不等式的性质是解题关键3、D【分析】分别求当点P在CA路线上运动时;当AB路线上运动时;当点P在BO路线上运动时,S关于t的函数的解析式,即可求解【详解】解:当点P在CA路线上运动时,设点P运动速度为 , ,a、OA为常数,S是关于t的一次函数,图象为自左向右上升的线段;当AB路线上运动时,保持不变,本段图象为平行于x轴的线段;当点P在BO路线上运动时,随着t的增大,点P从点B运动至点O,OM的长在减小,O

12、PM的高PM也随之减小到0,即的图象为开口向下的抛物线的一部分故选:D【点睛】本题主要考查了动点问题的函数图象,明确题意,得到每一段的函数解析式是解题的关键4、A【分析】根据点到对称轴的距离判断y3y1y2,再结合题目一一判断即可【详解】解:二次函数(a0)的图象过点,抛物线开口向上,对称轴为直线x=,点,与直线x=1的距离从大到小依次为、,y3y1y2,若y1y20,则y30,选项A符合题意,若,则或y10,选项B不符合题意,若,则,选项C不符合题意,若,则或y20,选项D不符合题意,故选:A【点睛】本题考查了二次函数的性质,二次函数图象上的点的坐标特征,得到y3y1y2是解题的关键5、A【

13、分析】根据抛物线的性质,得到;整理分式方程,得到y=,根据分式方程有整数解,且y=1时,对应a值不能取,确定符合题意的a值,最后求和即可【详解】关于x的二次函数,当时,y随x的增大而减小,即a2;,(a-1)y=-4,当y=1时,a=-3,此值要舍去;y=,关于y的分式方程有整数解,1-a=1;1-a=2;1-a=4;a=0或a=2;a=-1或a=3;a=-3或a=5;a2,且a-3,a=0或a=2或a=-1;符合条件的所有整数a的和-1+0+2=1,故选A【点睛】本题考查了二次函数的对称性,分式方程的整数解,正确判定抛物线对称轴的属性,正确求得整数解的a值是解题的关键6、B【分析】利用抛物线

14、解析式即可求得答案【详解】解:,抛物线顶点坐标为,故选:B【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2k中,顶点坐标为(h,k),对称轴为xh7、C【分析】根据平移的规律“左加右减,上加下减”,将yx2向左平移2个单位再向上平移1个单位即可得y(x+2)2+1,即可求得答案【详解】解:根据题意将yx2向左平移2个单位再向上平移1个单位即可得y(x+2)2+1,故选C【点睛】本题考查了二次函数的平移,掌握平移规律是解题的关键,理解题意弄清是谁平移到谁8、C【分析】结合题意,根据二次函数的性质,通过列三元一次方程组并求解,即可得到二次函数解析式;根据二次

15、函数图像的性质,对各个选项逐个分析,即可得到答案【详解】根据题意,得: 抛物线的对称轴是直线,故正确;当时,抛物线取最大值 抛物线的顶点坐标是,即正确;当时,的值为,故错误;,抛物线的对称轴是直线时,y随x的增大而增大 ,即正确故选:C【点睛】本题考查了二次函数、三元一次方程组的知识;解题的关键是熟练掌握二次函数图像的性质,从而完成求解9、C【分析】根据二次函数的定义依次判断【详解】解:A、不是二次函数,不符合题意;B、,不是二次函数,不符合题意;C、,是二次函数,符合题意;D、,不是二次函数,不符合题意;故选:C【点睛】此题考查二次函数的定义:形如的函数是二次函数,解题的关键是正确掌握二次函

16、数的构成特点10、C【分析】由图可知,当与新函数有3个交点时,过新函数的顶点,求出点的坐标,其纵坐标即为所求【详解】解:原二次函数,顶点,翻折后点对应的点为,当直线与新函数的图象有3个公共点,直线过点,此时故选:C.【点睛】本题主要考查了翻折的性质,抛物线的性质,确定翻折后的顶点坐标;利用数形结合的方法是解本题的关键二、填空题1、【分析】根据二次函数的顶点式,易得二次函数图象的顶点坐标【详解】解:抛物线的顶点坐标是故答案为:【点睛】本题考查了二次函数的性质,解题的关键是掌握二次函数的图象为抛物线,若顶点坐标为,则其解析式为2、y=-x2-2x+1【分析】根据二次函数的性质写出一个符合的即可【详

17、解】解:抛物线的解析式为y=-x2-2x+1,故答案为:y=-x2-2x+1【点睛】本题考查了二次函数的性质,能熟记二次函数的性质是解此题的关键,此题是一道开放型的题目,答案不唯一3、 (2,5)【分析】直接利用顶点式的特点可写出顶点坐标【详解】解:抛物线的顶点坐标是(2,5)故答案为:(2,5)【点睛】本题考查了二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)4、【分析】根据题意,找到图象G的切线,进而根据旋转的性质即可求得的最大值【详解】解:将二次函数yx2x(0x)的图象G,逆时针旋转得到图形G均是某个函数的图象,设过原

18、点的直线当yx2x,存在唯一交点时即解得设为上一点,过点作轴,则当图象旋转时,与轴相切,符合函数图象,故即故答案为:30【点睛】本题考查了旋转的的性质,抛物线与直线交点问题,解直角三角形,理解题意求得直线与轴的夹角是解题的关键5、【分析】由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断;由抛物线的对称轴为直线x=1,即可判断;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断,由抛物线开口向下,得到a0,再由当x=-1时,即可判断【详解】解:二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),c=3,故正确;抛物线的对称轴为直线x=1

19、,即,故正确;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,抛物线与x轴的另一个交点在2到3之间,故正确;抛物线开口向下,a0,当x=-1时,即,故错误,故答案为:【点睛】本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质三、解答题1、(1);(2)不能,理由见解析;(3)【分析】(1)设抛物线的解析式为:(a0),把小涵拿绳子的手的坐标是(0,1),小军拿绳子的手的坐标 以及小丽头顶坐标(1,1.5)代入,得到三元一次方程组,解方程组便可;(2)利用二次函数的性质求解函数的最大值,再与比较即可得到答案; (3)由y1.64时求出其自变量的值,便可

20、确定s的取值范围【详解】解:(1)设抛物线的解析式为:(a0),抛物线经过点 解得, 绳子对应的抛物线的解析式为:;(2)身高1.70m的小兵,不能站在绳子的正下方,让绳子通过他的头顶,理由如下:,当时, 绳子能碰到小兵的头,小兵不能站在绳子的正下方,让绳子通过他的头顶;(3)当y1.64时,即解得, 【点睛】本题考查的是二次函数的应用,主要考查了待定系数法求二次函数的解析式,应用二次函数的性质求解最大值,利用二次函数的图象解不等式,解题的关键是确定抛物线上点的坐标,和应用二次函数解析式解决实际问题2、(1)(4.5,3.05),(3,3.3);(2)2.3米【分析】(1)根据题意,直接写出坐

21、标即可;(2)设抛物线的解析式为:,从而求出a的值,再把x=0代入解析式,即可求解【详解】(1)由题意得:点坐标为(4.5,3.05),的坐标为(3,3.3),故答案是:(4.5,3.05),(3,3.3);(2)设抛物线的解析式为:,把点坐标(4.5,3.05),代入得,解得:,当x=0时,答:篮球出手时距地面的高度为2.3米【点睛】考查了二次函数的应用,利用二次函数的顶点式,求出函数解析式是解题的关键3、(1)证明见解析;(2)(-6,5);(0,0)【分析】(1)把A( - 4,0)和点B(5,)代入函数解析式计算即可;(2)先求出抛物线和直线AB的解析式,求出直线AB关于x轴的对称直线

22、AE,则BAE= 2BAC,再过B作AE的平行线与抛物线的交点即为D点;(3)根据四边形对角线互相平分结合中点公式计算即可【详解】(1)把A( - 4,0)和点B(5,)代入函数解析式得:两个方程相减得:,即a + b = (2)抛物线经过点C(4,0)解得:抛物线解析式为A( - 4,0)和点B(5,)直线AB的解析式为直线AB与y轴的交点F坐标为(0,1)点F关于x轴的对称点E坐标为(0,-1)EAC= BAC,直线AE的解析式为BAE = 2BACB作AE的平行线与抛物线的交点为D点ABD = BAE = 2BAC直线AE的解析式为设BD解析式为代入B(5,)得BD解析式为联立BD与抛物

23、线解析式得:,解得或D点坐标为(-6,5)M、N、P三个点在抛物线上,点Q在y轴上设,MN中点坐标为PQ中点坐标为直线y = kx - 2(k0)与抛物线交于设M,N两点,整理得MN中点坐标为四边形MPNQ是平行四边形MN和PQ互相平分,即MN、PQ的中点是同一个点整理得,解得Q点坐标为(0,0)【点睛】本题考查二次函数与几何的综合题,涉及到直线的对称与平行、平行四边形的性质等知识点,与到两倍角问题通过对称构造倍角是解题的关键4、(1)抛物线的解析式为:;(2);(3)点N的纵坐标为5【分析】(1)根据题意可得一次函数图象经过A、D两点,所以当及当时,可确定A、D两点坐标,然后代入抛物线解析式

24、求解即可确定;(2)根据题意当时,代入抛物线解析式确定点P的坐标,求得,然后求出直线与y轴的交点T,利用勾股定理确定,由平行可得三角形相似,利用相似三角形的性质即可得出结果;(3)过点P作轴,且,即,利用相似三角形的性质可确定,求出直线GF的函数解析式,过点M作轴,设且,可求得MF的长度,设直线MP的函数解析式为:,将点,代入即可确定点的坐标,求出,根据题意即可确定点,设点R、点N在如图所示位置:过点N作轴,过点M作,过点R作,利用相似三角形及勾股定理即可得出结果【详解】解:(1)经过A、D两点,当时,解得,当时,将A、D两点代入抛物线解析式可得:,解得:,抛物线的解析式为:;(2)当时,解得

25、:,直线解析式,当时,在RtAOT中,轴,轴,AOTDQP,即;(3)如图所示:过点P作轴,且,即,FGOFPS,设直线GF的函数解析式为:,可得:,解得:,直线GF的函数解析式为:,过点M作轴,设且,即,设直线MP的函数解析式为:,将点,代入可得:可得:,解得:,点,解得:,点,设点R、点N在如图所示位置:过点N作轴,过点M作,过点R作,NMINRJ,设,则,代入化简可得:,联立求解可得:,点N的纵坐标为5【点睛】题目主要考查一次函数与二次函数的综合问题,包括待定系数法确定函数解析式,相似三角形的判定和性质,勾股定理,锐角三角函数解直角三角形等,理解题意,作出相应辅助线是解题关键5、(1)y

26、|x24x|3;(2)见解析;(3)见解析;(4)【分析】(1)利用待定系数法求出解析式即可;(2)将x=-1,2,5分别代入解析式计算即可;(3)描点,用平滑的曲线连接即可;(4)结合图形写出交点横坐标即可;【详解】解:(1)将(0,-3)(1,0)(3,0)代入ya|x2+bx|+c得 解得:所以表达式为y|x24x|3(2)当x=-1时,y=2;当x=2时,y=1当x=5时,y=2(3)如图:(4)y-x+1与y|x24x|3图象的交点即为方程a|x2+bx|+c=-x+1的解,由图可知交点为:(-1,2)(1,0)(4,-3)即答案为:【点睛】本题考查了待定系数法求解析式,二次函数的图像与性质以及二次函数与一元二次方程的关系解题的关键是掌握二次函数的图像与性质

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁