《难点解析北师大版九年级数学下册第二章二次函数单元测试练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《难点解析北师大版九年级数学下册第二章二次函数单元测试练习题(无超纲).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第二章二次函数单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知:二次函数yax2bxc(a0)的图象如图所示,下列结论中:abc0;2ab0;abc0;当x1时,y随x的
2、增大而增大;a1,其中正确的项是( )ABCD2、下列各式中,是的二次函数的是( )ABCD3、如图,抛物线yax2+bx+c(a0)与x轴交于点A(1,0),与y轴的交点B在点(0,2)与点(0,3)之间(不包括这两点),对称轴为直线x2有以下结论:abc0;5a+3b+c0;a;若点M(9a,y1),N(a,y2)在抛物线上,则y1y2其中正确结论的个数是( )A1B2C3D44、抛物线y(x2)23的顶点坐标是( )A(2,3)B(2,3)C(2,3)D(2,3)5、已知二次函数y(xm)2m+1(m为常数)二次函数图象的顶点始终在直线yx+1上 当x2时,y随x的增大而增大,则m=2点
3、A(x1,y1)与点B(x2,y2)在函数图象上,若x1x2,x1+x22m,则y1y2 其中,正确结论的个数是( )A0个B1个C2个D3个6、将抛物线向右平移2个单位,再向上平移3个单位得到的抛物线是( )ABCD7、二次函数的图象开口( )A向下B向上C向左D向右8、下列函数中,是二次函数的是( )ABCD9、下列关系式中,属于二次函数的是()AyByCyDyx32x10、在平面直角坐标系中,点M的坐标为(m,m2 - bm),b为常数且b 3若m2 - bm 2 - b,m ,则点M的横坐标m的取值范围是 ( )A0 m Bm C m Dm 0,由抛物线与y轴交于x轴下方可得c0,由对
4、称轴0x1,得出b0,故正确;对称轴0x1,-1,a0,-b0,故错误;把x=-1时代入y=ax2+bx+c=a-b+c,结合图象可以得出y0,即a-b+c0,故错误;由图象得,当x1时,y随x的增大而增大,故正确;由图象知,函数图象过(-1,2),(1,0)两点,代入解析式得, 得, ,故正确正确的项是故选:B【点睛】此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值2、C【分析】根据二次函数的定义依次判断【详解】解:A、不是二次函数,不符合题意;B、,不是二次函数,不符合题意;C、,是二次函数,符
5、合题意;D、,不是二次函数,不符合题意;故选:C【点睛】此题考查二次函数的定义:形如的函数是二次函数,解题的关键是正确掌握二次函数的构成特点3、C【分析】根据二次函数的图象与系数的关系即可求出答【详解】解:由开口可知:a0,对称轴 b0,由抛物线与y轴的交点可知:c0,abc0,故正确;对称轴x=, b=-4a,5a+3b+c=5a- 12a+c=-7a+c,a0,c0,-7a+c0,5a+3b+c 0,故正确;x=-1,y=0,a-b+c=0, b=-4a,c=-5a,2c3,2-5a3,a,故正确;点M(-9a,y1),N(,y2) 在抛物线上,则 当时,y1y2当-时,y1y2故错误故选
6、: C【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型4、B【分析】由抛物线的顶点式y(xh)2k直接看出顶点坐标是(h,k)【详解】解:抛物线为y(x2)23,顶点坐标是(2,3)故选:B【点睛】此题主要考查二次函数顶点式,解题的关键是熟知抛物线的顶点式y(xh)2k的顶点坐标是(h,k)5、B【分析】由顶点坐标(m,-m+1),可得x=m,y=-m+1,即可证明顶点在直线y=-x+1上;根据二次函数的性质,当时,y随x的增大而增大,可知;由,根据已知可以判断,即可判断【详解】解:证明: 图象的顶点为(m,-m+1),设顶点坐标为(x,y),则x=
7、m,y=-m+1,y=-x+1,即顶点始终在直线y=-x+1上, 正确;,对称轴,当时,y随x的增大而增大,时,y随x的增大而增大, 不正确; 与点 在函数图象上,x1x2,x1+x22m, 不正确故选:B【点睛】本题考查二次函数图像和性质,函数值大小比较等,解题的关键是掌握一元二次方程根与系数的关系及做差法比较大小6、A【分析】抛物线的移动主要看顶点的移动,的顶点是, 的顶点是,的顶点是 ,的顶点是 先确定抛物线顶点坐标是原点,然后根据向右平移,横坐标加,向上平移纵坐标加,求出平移后的抛物线的顶点坐标,再根据平移变换不改变图形的形状,利用顶点式写出即可抛物线的平移口诀:自变量加减:左加右减,
8、函数值加减:上加下减【详解】解:抛物线的顶点坐标为(0,0),向右平移2个单位,再向上平移3个单位,平移后的顶点坐标为(2,3),平移后的抛物线解析式为故选:A【点睛】本题考查了二次函数图象的平移,根据顶点的变化确定函数的变化,要熟记平移规律“左加右减,上加下减”7、A【分析】根据二次函数的二次项系数的符号即可判断开口方向【详解】解:二次函数,二次函数的图象开口向下故选A【点睛】本题考查了二次函数的图象的性质,掌握二次函数的图象开口向上,二次函数的图象开口向下是解题的关键8、B【分析】根据二次函数的定义即可判断【详解】A. 是反比例函数,故此选项错误;B. 是二次函数,故此选项正确;C. 是一
9、次函数,故此选项错误;D. 是正比例函数,故此选项错误故选:B【点睛】本题考查二次函数的定义:形如,其中,且a、b、c是常数,掌握二次函数的定义是解题的关键9、A【分析】二次函数为形如的形式;对比四个选项,进而得到结果【详解】解:A符合二次函数的形式,故符合题意;B中等式的右边不是整式,故不是二次函数,故不符合题意;C中等式的右边分母中含有,但是分式,不是整式,故不是二次函数,故不符合题意;D中最高次幂为三,是三次函数,故不是二次函数,故不符合题意;故选A【点睛】本题考察了二次函数的概念解题的关键与难点在于理清二次函数的概念10、B【分析】由m2 - bm 2 - b,得到m2 - bm -
10、2 +b=0,因式分解得,进而判断出,故当m2 - bm - 2 +b0时,或,再由,且,可知无解,即可求解.【详解】m2 - bm 2 - b, m2 - bm - 2 +b0,令m2 - bm - 2 +b=0,则,则或,解得:,二次函数y= x2 - bx - 2 +b,开口向上,与x轴交点为x1,x2,(且x10时,xx2,令x=m,则y= m2 - bm - 2 +b=0,解得,即,当m2 - bm - 2 +b0时,或,则,且,无解,故选:B【点睛】此题考查了因式分解法解一元二次方程,二次函数的图象的性质,对进行取值范围的确定是解答此题的关键.二、填空题1、2【分析】利用待定系数法
11、求出抛物线解析式,设点横坐标为,点C(m,4),根据四边形是矩形,可证EFx轴,F、E两点纵坐标相同,根据、两点在抛物线上,得出F,E关于y轴对称,可证点C与点D关于y轴对称,得出点D的坐标为(-m,4)根据,求出点坐标为,根据函数解析式列方程,解方程即可【详解】解:把代入中得,解得,设点横坐标为,点C(m,4),四边形是矩形,EFCD即EFAB,过点A作轴的垂线交抛物线于另一点,ABx轴,EFx轴,F、E两点纵坐标相同,、两点在抛物线上,F,E关于y轴对称,点C与点D关于y轴对称,点D的坐标为(-m,4),则,点坐标为,解得(舍或故答案为:2【点睛】本题考查待定系数法求抛物线解析式,矩形性质
12、,轴对称判定与性质,根据矩形性质得出FEx轴,利用点F的坐标特征列方程是解题关键2、第四象限【分析】由二次函数的图象可判断出a、b的符号,再进行判断一次函数的图象所在的象限,即可求解【详解】解:二次函数图象开口向上,对称轴,一次函数与y轴的交点在x轴的上方,且,经过一、三象限,一次函数的图象经过第一、二、三象限,不经过第四象限,故答案为:第四象限【点睛】本题主要考查二次函数的图象与系数的关系,一次函数图象的性质,掌握二次函数及一次函数图象的性质是解题关键3、或【分析】由题意易得二次函数的对称轴为直线,则有该二次函数的最小值为4,然后由题意可分当m0时,则有y随x的增大而减小,当m1时,则y随x
13、的增大而增大,进而根据函数的性质可进行求解【详解】解:由二次函数可知对称轴为直线,当x=1时,二次函数有最小值,最小值为,二次函数在时的最小值为6,然后可分当m+11时,即m0,则有y随x的增大而减小,当x=m+1时,函数有最小值,即为,解得:(正根舍去),当m1时,则y随x的增大而增大,当x=m时,函数有最小值,即为,解得:(负根舍去),综上所示:m的值是或;故答案为或【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键4、【分析】设抛物线与x轴的交点为(x1,0)和(x2,0),根据一元二次方程的判别式和根与系数的关系解答即可【详解】解:由于抛物线与x轴的两个
14、交点在点(1,0)两旁,故设抛物线与x轴的交点为(x1,0)和(x2,0),则x1、x2是一元二次方程有两个不相等的实数根,x1+x2=m, x1x2=m2,由题意,得:即,解得:,故答案为:【点睛】本题考查抛物线与x轴的交点问题、一元二次方程的根与系数关系、一元二次方程根的判别式、解一元一次不等式,熟练掌握抛物线与x轴的交点问题与一元二次方程根的关系是解得的关键5、600【分析】将函数解析式化为顶点式,利用函数的最值解答【详解】解:s60t1.5t2=,当t=20时,s有最大值600,故答案为:600【点睛】此题考查了将一般式函数化为顶点式,函数的最值,正确理解题意是解题的关键三、解答题1、
15、(1)y关于x的函数表达式为;(2)当销售价格为15元时,才能使日销售利润最大【分析】(1)设y关于x的函数表达式为,然后由表格任取两个数据代入求解即可;(2)由(1)及题意易得,然后根据“规定这种农产品利润率不得高于50%”及二次函数的性质可进行求解【详解】解:(1)设y关于x的函数表达式为,则把和代入得:,解得:,y关于x的函数表达式为;(2)由(1)及题意得:,-1000,开口向下,对称轴为直线,这种农产品利润率不得高于50%,解得:,当时,w随x的增大而增大,当时,w有最大值;答:当销售价格为15元时,才能使日销售利润最大【点睛】本题主要考查二次函数与一次函数的应用,解题的关键是得到销
16、售量与销售价格的函数关系式2、(1);(2)【分析】(1)首先设出抛物线的顶点式表达式为,然后将(1,0)代入求解即可;(2)根据二次函数的增减性和对称性可得当,取最大值,当,取最小值,然后代入求解即可【详解】解:(1)由抛物线顶点式表达式得:将(1,0)代入得:,解得:二次函数解析式为:;(2),抛物线对称轴为:,开口向上,当,取最大值,当,取最小值-2,当时,函数值y得取值范围是:【点睛】此题考查了待定系数法求二次函数表达式,二次函数的图像和性质,解题的关键是熟练掌握待定系数法求二次函数表达式,二次函数的图像和性质3、(1);(2),;(3)存在,【分析】(1)利用对称点与对称轴的关系:对
17、称点的横坐标之和等于对称轴的2倍,即可求出该抛物线的对称轴(2)分别讨论的取值范围与对称轴的位置,分别求出不同情况下取最大值与最小值时,对应的的取值,进而求出求,的值(3)由于的取值范围是,取不到最大值和最小值,故不包含对称轴,分别讨论在对称轴的左右两侧即可【详解】(1)解:依题意, 抛物线过点(0,3),(4,3), 该抛物线的对称轴为直线 (2)解: 抛物线对称轴为直线, ,即 , ,抛物线开口向上, 当时,函数值在上取得最小值即 联立,解得, 抛物线的表达式为,即, 当时,y随x的增大而减小,当时取得最大值,当时,y随x的增大而增大,当时取得最大值,对称轴为,与时的函数值相等, 当时的函
18、数值大于当时的函数值,即时的函数值 当时,函数值在上取得最大值3代入有,舍去负解,得 (3)解:存在,当时,的取值范围是,无法取到最大值与最小值,关于的取值范围一定不包含对称轴,当时,在对称轴的左侧,二次函数开口向上,时,有最大值,时,有最小值,由题意可知:,解得:,故,当时,在对称轴的右侧,二次函数开口向上,时,有最小值,时,有最大值,由题意可知:,此时无解,故不符合题意,【点睛】本题主要是考查了对称点与对称轴的关系,以及二次函数的最值求解,熟练通过分类讨论,分别讨论对称轴与的取值范围的关系,进而确定函数取最值时的的取值,是求解该题的关键4、(1);(2)见解析;(3)-3x1【分析】(1)
19、设二次函数解析式为,利用待定系数法求解;(2)利用描点法画图即可;(3)利用表格及图象解答即可【详解】解:(1)设二次函数解析式为,由表格可知,二次函数图象经过点(-3,0),(0,-3),(1,0),则,解得,这个二次函数的表达式为;(2)如图:;(3)由表格可知,当y=0时,x=-3及x=1;由图象知,函数图象的开口向上,当函数值y0时,对应的x的取值范围是-3x1,故答案为:-3x1【点睛】此题考查了待定系数法求函数解析式,画抛物线,由函数值求自变量的取值范围,正确掌握各知识点是解题的关键5、(1);(2)直线【分析】(1)利用待定系数法求解析式即可;(2)利用对称轴公式求解即可【详解】解:(1)二次函数yx22mx5m的图象经过点(1,2), 212m5m, 解得; 二次函数的表达式为yx22x5(2)二次函数图象的对称轴为直线;故二次函数的对称轴为:直线;【点睛】本题考查了求二次函数解析式和对称轴,解题关键是熟练运用待定系数法求解析式,熟记抛物线对称轴公式