难点解析北师大版九年级数学下册第二章二次函数同步练习试题(无超纲).docx

上传人:知****量 文档编号:28226002 上传时间:2022-07-26 格式:DOCX 页数:23 大小:770.08KB
返回 下载 相关 举报
难点解析北师大版九年级数学下册第二章二次函数同步练习试题(无超纲).docx_第1页
第1页 / 共23页
难点解析北师大版九年级数学下册第二章二次函数同步练习试题(无超纲).docx_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《难点解析北师大版九年级数学下册第二章二次函数同步练习试题(无超纲).docx》由会员分享,可在线阅读,更多相关《难点解析北师大版九年级数学下册第二章二次函数同步练习试题(无超纲).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第二章二次函数同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,将抛物线yx24x向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()Ay(x+1

2、)2+1By(x+1)29Cy(x5)2+1Dy(x5)292、将抛物线向右平移2个单位,再向上平移3个单位得到的抛物线是( )ABCD3、已知抛物线yax2bxc(a0),且abc1,abc3判断下列结论:抛物线与x轴负半轴必有一个交点;b1;abc0; 2a2bc0;当0x2时,y最大3a,其中正确结论的个数( )A2B3C4D54、抛物线y = a + bx + c的对称轴是( )Ax=Bx = - Cx =Dx = - 5、抛物线y2(x1)22图象与y轴交点的坐标是()A(0,2)B(0,2)C(0,0)D(2,0)6、下列函数中,是二次函数的是( )ABCD7、已知抛物线的解析式为

3、,则这条抛物线的顶点坐标是( )ABCD8、下列二次函数的图象与x轴没有交点的是( )Ay3x22xByx23x4Cyx24x4Dyx24x59、如图,抛物线的对称轴是直线下列结论:;其中正确结论的个数是( )A1个B2个C3个D4个10、将二次函数的图象沿x轴向左平移2个单位长度,再沿y轴向上平移3个单位长度,得到的函数表达式是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,过点A(0,4)作平行于x轴的直线AC分别交抛物线与于B、C两点,那么线段BC的长是_2、定义:直线与抛物线两个交点之间的距离称作抛物线关于直线的“割距”,如图,线段MN长就是

4、抛物线关于直线的“割距”已知直线与x轴交于点A,与y轴交于点B,点B恰好是抛物线的顶点,则此时抛物线关于直线y的割距是_3、如图,在平面直角坐标系中,、两点的坐标分别为、,点是线段的中点,将线段绕点顺时针旋转得到,过、三点作抛物线当时,抛物线上最高点的纵坐标为_4、写出一个开口向下,且对称轴在轴左侧的抛物线的表达式:_5、二次函数(为常数)与轴的一个交点为(1,0),则另一个交点为_三、解答题(5小题,每小题10分,共计50分)1、如图,已知二次函数yax2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3)对称轴为直线x1(1)求该二次函数的关系式和顶点坐标;(2)连结B

5、C,求的面积;(3)当y3时,则x的取值范围为 2、二次函数yax2bxc的图象经过点A(4,0),B(0,3),C(2,0),求它的解析式,直接写出它的开口方向、对称轴和顶点坐标3、行驶中的汽车刹车后,由于惯性还会继续向前滑行一段距离,这段距离称为“刹车距离”某公司设计了M,N两款型号的新型汽车,它们在平坦路面上的“刹车距离”y(单位:m)与车速x(单位:km/h)之间的函数关系分别可以用二次函数(0x200),(0x200,b1)近似地表示为了估计a的值,公司综合考虑各种路面情况,选择了六种有代表性的路面进行刹车试验,具体的数据如表:路面路面一路面二路面三路面四路面五路面六车速(km/h)

6、100100100100100100刹车距离(m)26.527.227.527.529.230.1(1)依据上述数据,合理估计a的值,并求M款型号汽车的“刹车距离”为3.15m时所对应的车速;(2)当50x200时,是否存在实数b,使得在相同的车速下N款型号汽车的“刹车距离”始终比M款型号汽车的“刹车距离”小?若存在,求出相应的b的取值范围;若不存在,请说明理由4、已知,如图所示,直线l经过点A(4,0)和B(0,4),它与抛物线yax2在第一象限内交于点P,又AOP的面积为(1)求直线AB的表达式;(2)求a的值5、某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部

7、分,表示篮球距地面的高度(单位:m)与行进的水平距离(单位:m)之间关系的图象如图所示已知篮球出手位置与篮筐的水平距离为4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m(1)图中点表示篮筐,其坐标为_,篮球行进的最高点的坐标为_;(2)求篮球出手时距地面的高度-参考答案-一、单选题1、A【分析】先将抛物线配方为顶点式,根据抛物线平移规律“左加右减,上加下减”解答即可【详解】解:将抛物线配方为顶点式,将抛物线先向左平移3个单位,再向上平移5个单位,得到的抛物线的解析式是y(x-2+3)24+5,即故选:A【点睛】本题考查抛物线的平移,熟练掌

8、握抛物线平移规律是解答的关键2、A【分析】抛物线的移动主要看顶点的移动,的顶点是, 的顶点是,的顶点是 ,的顶点是 先确定抛物线顶点坐标是原点,然后根据向右平移,横坐标加,向上平移纵坐标加,求出平移后的抛物线的顶点坐标,再根据平移变换不改变图形的形状,利用顶点式写出即可抛物线的平移口诀:自变量加减:左加右减,函数值加减:上加下减【详解】解:抛物线的顶点坐标为(0,0),向右平移2个单位,再向上平移3个单位,平移后的顶点坐标为(2,3),平移后的抛物线解析式为故选:A【点睛】本题考查了二次函数图象的平移,根据顶点的变化确定函数的变化,要熟记平移规律“左加右减,上加下减”3、B【分析】根据已知的式

9、子求出b,c,再根据二次函数的图象性质判断即可;【详解】abc1,abc3,两式相减得:,故正确;由两式相加得,故错误;当时,当时,当时,方程的两个根一个小于,一个大于1,抛物线与x轴负半轴必有一个交点,故正确;由抛物线对称轴为直线,当0x2时,y随x的增大而增大,当时,有最大值,即为,故正确;由题可得:,故错误;故正确的是;故选B【点睛】本题主要考查二次函数图象与系数的关系,二次函数图象上点的坐标特征,准确分析计算是解题的关键4、D【分析】根据抛物线对称轴的计算公式判断【详解】抛物线y = a + bx + c的对称轴是x = - ,故选D【点睛】本题考查了抛物线的对称轴,熟练抛物线对称轴的

10、计算公式是解题的关键5、C【分析】结合题意,根据二次函数图像的性质,当时,计算y的值,即可得到答案【详解】当时, 抛物线y2(x1)22图象与y轴交点的坐标是:(0,0)故选:C【点睛】本题考查了二次函数的知识;解题的关键是熟练掌握二次函数图像的性质,从而完成求解6、B【分析】根据二次函数的定义即可判断【详解】A. 是反比例函数,故此选项错误;B. 是二次函数,故此选项正确;C. 是一次函数,故此选项错误;D. 是正比例函数,故此选项错误故选:B【点睛】本题考查二次函数的定义:形如,其中,且a、b、c是常数,掌握二次函数的定义是解题的关键7、B【分析】利用抛物线解析式即可求得答案【详解】解:,

11、抛物线顶点坐标为,故选:B【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2k中,顶点坐标为(h,k),对称轴为xh8、D【分析】将函数交点问题,转化为求方程根,然后分别计算判别式的值,来判断抛物线与x轴的交点个数即可【详解】A、=22-4(-3)00,此抛物线与x轴有两个交点,所以A选项错误;B、=(-3)2-41(-4)0,此抛物线与x轴有两个交点,所以B选项错误;C、=(-4)2-414=0,此抛物线与x轴有1个交点,所以C选项错误;D、=42-4150,此抛物线与x轴没有交点,所以D选项正确故选:D【点睛】本题考查的是函数图象与x轴的交点的判断,熟

12、练掌握方程与函数的联系及根的判别式是正确解答本题的关键9、C【分析】根据函数图象确定a、b、c的正负,即可确定的正误;根据对称轴确定b和2a的关系,进而确定的正误;根据函数图象确定x=-2的函数值的正负,然后代入抛物线的解析式即可确定的正误;当x=-1时,可确定a-b+c0,当x=1时,函数值小于0,即a+b+c0,可判断的正误;当x=-1时,y有最大值,然后与x=m时的函数值,列不等式化简即可【详解】解:有抛物线开口方向向下,与y轴相交正半轴a0,c0抛物线的对称轴为x=-1 ,即b=2a0,故正确;b=2ab-2a=0,故错误;如图:抛物线的对称轴为x=-1,当x=0时,函数值大于0当x=

13、-2时,函数值大于0,4a-2b+c0,即4a+c2b,故错误;由图象可知,抛物线的对称轴为x=-1,此时函数有最大值且函数值大于0当x=-1时,函数值大于0,即a-b+c0当x=1时,函数值小于0,当x=1时,函数值小于0,即a+b+c0(a+c)2-b2=(a-b+c)(a+b+c)0,即正确;当x=-1时,函数有最大值y=a-b+c当x=m时,函数值为y=am2+bm+ca-b+cam2+bm+c,即,故正确故选C【点睛】本题主要考查了二次函数的图象的性质,灵活运用数形结合思想成为解答本题的关键10、D【分析】根据二次函数的平移方法“左加右减,上加下减”可直接进行排除选项【详解】解:由二

14、次函数的图象沿x轴向左平移2个单位长度,再沿y轴向上平移3个单位长度,得到的函数表达式是;故选D【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键二、填空题1、2【分析】根据题意,将分别代入 ,求得的正数解,即求得的坐标,进而即可求得的长【详解】解:,则解得,即解得,即故答案为:【点睛】本题考查了根据二次函数的函数值求自变量,联立解方程是解题的关键2、【分析】先求出B点坐标,从而求出抛物线解析式,然后求出直线与抛物线的两个交点,利用两点距离公式即可求出答案【详解】解:B直线与y轴的交点,B点坐标为(0,3),B是抛物线的顶点,抛物线解析式为,解得或,直线与抛物线的两

15、个交点坐标为(0,3),(1,2),抛物线关于直线y的割距是,故答案为:【点睛】本题主要考查了求一次函数与y轴交点,二次函数与一次函数的交点,两点距离公式,二次函数图像的性质,熟知相关知识是解题的关键3、【分析】根据题意求得顶点坐标,然后利用待定系数法即可求得抛物线的解析式,根据图象上点的坐标特征即可求得抛物线上最高点的纵坐标【详解】解:、两点的坐标分别为、,点是线段的中点,轴,将线段绕点顺时针旋转得到,轴,顶点为,设抛物线的解析式为,代入得,抛物线开口向下,当时,在时,函数有最大值为:,当时,抛物线上最高点的纵坐标为故答案为:【点睛】本题考查的是二次函数的最值,待定系数法求二次函数的解析式,

16、二次函数的性质,坐标与图形变化-旋转,根据题意得到顶点坐标是解题的关键4、y=-x2-2x+1【分析】根据二次函数的性质写出一个符合的即可【详解】解:抛物线的解析式为y=-x2-2x+1,故答案为:y=-x2-2x+1【点睛】本题考查了二次函数的性质,能熟记二次函数的性质是解此题的关键,此题是一道开放型的题目,答案不唯一5、(-5,0)【分析】先确定抛物线的对称轴,然后利用二次函数的对称性确定抛物线与x轴的另一个交点坐标【详解】解:抛物线的对称轴为直线,而抛物线与x轴的一个交点为(-1,0),所以抛物线与x轴的另一个交点为(-5,0)故答案为:(-5,0)【点睛】本题考查了抛物线与x轴的交点,

17、解答本题的关键是求出抛物线图象的对称轴,利用对称知识进行解答,此题难度不大三、解答题1、(1)yx2+2x+3,(1,4);(2)6;(3)x0或x2【分析】(1)将点A,C坐标代入函数解析式然后求解方程组即可确定函数解析式,然后将对称轴代入即可得顶点坐标;(2)连接BC,AC,由点及对称轴为,可确定点B的坐标,得出,结合图形,即可计算三角形面积;(3)当时,求解一元二次方程,然后结合图象即可得出满足时的解集【详解】解:(1)将点A,C坐标代入函数解析式可得:,解得:,当时,抛物线顶点坐标为(1,4);(2)如图所示,连接BC,AC,点及对称轴为,点,SABC=12ABOC=1243=6;(3

18、)当y3时,解得:或,抛物线开口向下,结合图象可得:时,或,故答案为:或【点睛】题目主要考查一元二次函数与图形的结合,包括利用待定系数法确定函数解析式,所围成的三角形面积,二次函数与方程的关系等,理解题意,作出相应辅助线,结合图象,综合运用二次函数的性质是解题关键2、,开口向上,对称轴为x1,顶点坐标为(1,)【分析】首先利用待定系数法求出二次函数的表达式,然后根据二次函数的图像和性质求解即可【详解】解:A(4,0),B(0,3),C(2,0),解得:,C3,二次函数解析式为:,二次函数的图像开口向上;,二次函数的对称轴为x1;将代入得:,二次函数的顶点坐标为(1,)【点睛】此题考查了待定系数

19、法求二次函数表达式,二次函数的图像和性质,解题的关键是利用待定系数法求出二次函数的表达式3、(1),当M款型号汽车的“刹车距离”为3.15m时所对应的车速;(2)存在,【分析】(1)先根据表格求出刹车距离的平均值,然后再代入函数解析式进行求解a即可,进而把代入求解即可;(2)由(1)及题意易得,即,当x=0时,则有,然后可得在恒成立,令,则有该函数的对称轴为直线,进而可分当时,当时,当时,最后分类求解即可【详解】解:(1)由表格得:m,解得:,把代入得:,解得:(不符合题意,舍去),当M款型号汽车的“刹车距离”为3.15m时所对应的车速;(2)存在,理由如下:由(1)及题意得:,即,当x=0时

20、,则有,令,则有该二次函数的图象在内,始终在x轴的上方,开口向上,对称轴为直线,当时,即,则有y随x的增大而增大,当时,则,解得:,;当时,即,则需满足顶点的纵坐标大于0即可,把代入解析式得:,化简得:,不符合题意,舍去;当时,即,则有y随x的增大而减小,将x=200代入解析式得:,解得:,不符合题意,舍去;综上所述:b的取值范围为【点睛】本题主要考查二次函数的应用,熟练掌握二次函数的图象与性质是解题的关键4、(1);(2)【分析】(1)利用待定系数法即可求得直线的解析式;(2)先根据面积求得点的纵坐标,再代入直线的解析式可得其横坐标,然后将点的坐标代入二次函数即可得【详解】解:(1)设直线的

21、解析式为,将点代入得,解得,故直线的表达式为;(2)如图,过点作轴于点,设点的坐标为,则,的面积为,解得,将点代入得:,解得,则,将点代入得:,解得,故的值为【点睛】本题考查了二次函数与一次函数的综合等知识点,熟练掌握待定系数法是解题关键5、(1)(4.5,3.05),(3,3.3);(2)2.3米【分析】(1)根据题意,直接写出坐标即可;(2)设抛物线的解析式为:,从而求出a的值,再把x=0代入解析式,即可求解【详解】(1)由题意得:点坐标为(4.5,3.05),的坐标为(3,3.3),故答案是:(4.5,3.05),(3,3.3);(2)设抛物线的解析式为:,把点坐标(4.5,3.05),代入得,解得:,当x=0时,答:篮球出手时距地面的高度为2.3米【点睛】考查了二次函数的应用,利用二次函数的顶点式,求出函数解析式是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁