《精品试卷京改版九年级数学下册第二十四章-投影、视图与展开图定向测评试题(名师精选).docx》由会员分享,可在线阅读,更多相关《精品试卷京改版九年级数学下册第二十四章-投影、视图与展开图定向测评试题(名师精选).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十四章 投影、视图与展开图定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是一个正方体包装盒的表面展开图,若在其中的三个面A,B,C上分别填上适当的数,使得A,B,C的数字与
2、其对面数字互为相反数,则A,B,C上数字分别为()A0,3,4B0,3,4C4,0,3D3,0,42、如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是( )ABCD3、下面四个立体图形中,从正面看是三角形的是()ABCD4、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中
3、ABC45;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则ab19其中正确结论的个数有( )A1个B2个C3个D4个5、下列图形都是由六个相同的正方形组成的,经过折叠不能围成正方体的是()ABCD6、下列物体的左视图是圆的为( )A足球B 水杯C 圣诞帽D 鱼缸7、如图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是( )ABCD8、如图是由几个大小相同的小正方体搭成的几何体,若去掉1号小正方体,则下列说法正确的是()A左视图和俯视图不变B主视图和左视图不变C主视图和俯视图不变D都不变9、如图,是一个正方体展开图,把展开图折叠成
4、正方体后,“们”字一面相对面上的字是()A我B中C国D梦10、一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( )A15个B13个C11个D5个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下面是一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序排列为 _2、从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是_3、如图是一个长方体纸盒的表面展开图,纸片厚度忽略不计,按图中数据,这个盒子容积为_4、用一个长方形的纸片按如图方式制作一个无盖的长方体盒子(在长方形的右边两个角上各剪去一个大小相同的
5、正方形,左上角剪去一个长方形)设这个长方形的长为a,宽为b,折成的无盖长方体盒子高为c,若a7cm,b4cm,c1cm,则这个无盖长方体盒子的容积是_cm35、一个直九棱柱底面的每条边长都等于3cm,侧边长都等于6cm,则它的侧面面积等于 _cm2三、解答题(5小题,每小题10分,共计50分)1、如图是一个无盖正方体纸盒的表面展开图,请解答下列问题:(1)若在图上补上一个同样大小的正方形F,便它能围成一个正方体,请在提供的两个图形中画出两种不同的补法;(2)在(1)补完的图中,若设Aa3a2b3,Ba2b,Ca31,D1a2b,目正方体相对两个面所表示的代数式的和都相等,求E、F分别代表的代数
6、式2、已知下图为一几何体从三个方向看到的形状图;(1)写出这个几何体的名称;(2)画出它的表面展开图;(3)根据图中所给的数据,求这个几何体的表面积(结果保留)3、补全如图的三视图 4、如图是由几个相同的小立方块所搭几何体的俯视图(从上面往下观察几何体所看到的形状),小正方形中的数字表示在该位置小立方块的个数请解答下列问题:(1)从正面、左面观察该几何体,分别画出你所看到的图形;(2)若小立方块的棱长为2,则从正面观察该几何体时,你所看到的形状的面积是 5、如图是由10个大小相同的小立方体搭建的几何体,其中每个小立方体的棱长为1厘米(1)请按要求在方格内分别画出从这个几何体的三个不同方向看到的
7、形状图;(2)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加 个小正方体(直接填空)-参考答案-一、单选题1、A【分析】依据立方体展开图的性质确定出对面,然后依据相反数的定义计算,即可得到答案【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“0”是相对面,“B”与“3”是相对面,“C”与“4”是相对面,相对面上的两数互为相反数,A、B、C内的三个数依次是0、3、4故选:A【点睛】本题考查了立方体展开图、相反数的知识;解题的关键是熟练掌握立方体展开图、相反数的性质,从而完成求解2、C【分析】根据左视图的定义,左视图就是物体由左向右方投影得到的视
8、图,即可得出结论【详解】解:根据左视图的定义,该几何体的左视图是:故选:C 【点睛】此题考查了几何体左视图的判断,掌握左视图的定义是解题关键3、C【分析】找到从正面看所得到的图形为三角形即可【详解】解:A、主视图为正方形,不符合题意;B、主视图为圆,不符合题意;C、主视图为三角形,符合题意;D、主视图为长方形,不符合题意故选:C【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图4、B【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);作出相应的俯视图,标出搭成
9、该几何体的小正方体的个数最多(少)时的数字即可为【详解】解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开1257条棱(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中ABC45;错误,因为ABC是等边三角形,所以ABC60(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b19错
10、误,应该是a6,b11,a+b17故选:B【点睛】此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键5、C【分析】根据正方体展开图的特征,逐一判断即可【详解】A经过折叠能围成正方体,故正确;B经过折叠能围成正方体,故正确;C经过折叠后,有两个面重叠,不能围成正方体,故错误;D经过折叠能围成正方体,故正确;故选:C【点睛】本题主要考查展开图折叠成几何体的知识点,熟练正方体的展开图是解题的关键6、A【分析】根据左视图是指从物体左面向右面正投影得到的投影图,即可求解【详解】解:A、左视图为圆,故本选项符合题意;B、左视图
11、为长方形,故本选项不符合题意;C、左视图为三角形,故本选项不符合题意;D、左视图为长方形,故本选项不符合题意;故选:A【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键7、A【分析】根据“一线不过四,凹、田应弃之”可以判断所给展开图是否为正方体的表面展开图,逐项判断即可求解【详解】解:
12、A、折叠后才能围成一个正方体,故本选项符合题意;B、含有“田”字形,故本选项不符合题意;C、折叠后有一行两个面无法折起来,而且都缺个面,折叠后才不能围成一个正方体,故本选项不符合题意;D、含有“田”字形,折叠后才不能围成一个正方体,故本选项不符合题意;故选:A【点睛】本题主要考查了几何体的折叠和展开图形,熟练掌握“一线不过四,凹、田应弃之”可以判断所给展开图是否为正方体的表面展开图是解题的关键8、A【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,再从看到的小正方形的个数与排列方式两个方面逐一分析可得答案【详解】解:若去掉1号小正方体, 主视图一定
13、变化,主视图中最右边的一列由两个小正方形变为一个,从上面看过去,看到的小正方形的个数与排列方式不变,所以俯视图不变,从左边看过去,看到的小正方形的个数与排列方式不变; 所以左视图不变,所以A符合题意,B,C,D不符合题意;故选:A【点睛】本题考查的是由小正方体堆砌而成的图形的三视图,掌握“三视图的含义”是解本题的关键.9、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点解答即可【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”字一面相对面上的字是“中”,故选:B【点睛】本题主要考查了正方体相对两个面上的文字,解题的关键是注意正方体的空间图形,从相对面入
14、手,分析及解答问题10、A【分析】根据主视图和左视图,分别找出每行每列立方体最多的个数,相加即可判断出答案【详解】综合主视图与左视图,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个,所以最多有(个),不可能有15个故选:A【点睛】本题考查三视图,根据题目给出的视图,出每行每列的立方体个数是解题的关键二、填空题1、【分析】根据从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长【详解】解:西为,西北为,东北为,东为,
15、将它们按时间先后顺序排列为,故答案是:【点睛】本题考查平行投影的特点和规律,解题的关键是掌握在不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体影子的指向是:西西北北东北东,影长由长变短,再变长2、圆柱【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱【详解】解:主视图和左视图都是长方形,此几何体为柱体,俯视图是一个圆,此几何体为圆柱故答案为:圆柱【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状3、6【分析】根据长方体纸盒的表面展开图得到长方体的长、宽、高,故
16、可求解【详解】解:3-1=2,5-2=3长方体的长、宽、高分别为1、2、3,则这个盒子的容积为6故答案为:6【点睛】此题考查了几何体的展开图,找出长方体的长、宽、高是解本题的关键4、8【分析】长方体的容积为长宽高,从题意求出分别求出长、宽、高即可【详解】解:无盖长方体盒子的高为c=1cm,AG=DF=1cm,AD=b-2c=4-2=2cm,BH=BC=AD=2cm,CD=a-c-BH=7-1-2=4cm,无盖长方体盒子的长为4cm,宽为2cm,高为1cm,这个无盖长方体盒子的容积为:421=8cm3,故答案为:8【点睛】本题考查列代数式,解题的关键是根据长方体的展开图,找出各条线段之间的关系,
17、本题属于中等题型5、162【分析】展开后底面一边长为7cm,求出底面的周长,用底面周长侧边长计算即可【详解】解:一个直九棱柱底面的每条边长都等于3cm,直九棱柱底面的周长为93=27cm;侧面积是276=162(cm2)故答案为162【点睛】本题考查了几何体的侧面积的应用,关键是掌握直棱柱侧面积公式底面周长侧棱长三、解答题1、(1)见解析;(2)【分析】(1)根据正方体平面展开图的规律即可解题;(2)由题意A,D对面,C,E对面,B,F对面,由A+D=C+E=B+F,据此计算即可【详解】解:(1)共有4种方法,如图,(2)由题意A,D对面,C,E对面,B,F对面,A+D= a3a2b3+1a2
18、b= a3+4,C+E= a31+EB+F= a2b+F【点睛】本题考查作图应用与设计、正方体法平面展开图等知识,掌握相关知识是解题关键2、(1)圆柱体;(2)见解析;(3)【分析】(1)根据三视图的特征即可得出几何体;(2)根据圆柱体的特征,侧面展开为一个长方形,底面为两个圆,即可画出;(3)根据三视图可得:展开图中圆的直径为8,长方形的长为16,根据圆柱表面积的计算方法即可求得结果【详解】解:(1)根据题目中已知的三视图符合圆柱体的三视图特征,故这个几何体为圆柱;(2)表面展开图如图所示:(3)展开图圆的周长为:;展开图圆的面积为:;这个几何体的表面积为:,这个几何体的表面积为【点睛】题目
19、主要考查三视图、几何体的侧面展开图及几何体的表面积计算方法,理解、看懂三视图是解题关键3、见解析【分析】视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示【详解】解:如图所示;【点睛】此题主要考查三视图的画法,注意实线和虚线在三视图的用法4、(1)见解析;(2)16【分析】(1)根据俯视图的信息,以及左视图和主视图的定义画图即可;(2)在(1)的基础之上求解即可【详解】解:(1)由俯视图可知,该组合体的主视图有3列,第1列有一个正方形,第2列有2个正方形,第3列有1个正方形;左视图有2
20、列,第1列有2个正方形,第2列有2个正方形,如图所示:(2)由主视图可知,共有4个相同的正方形组成,故答案为:16【点睛】本题考查画简单组合体的三视图,理解三视图的定义,灵活运用空间想象能力是解题关键5、(1)见解析;(2)4【分析】(1)主视图有3列,每列小正方形数目分别为3,1,2;左视图3列,每列小正方形数目分别为3,2,1;俯视图有3列,每行小正方形数目分别为3,2,1;(2)保持俯视图和左视图不变,得到最多可得到小正方形的个数,与原图形比较即可得出添加的小正方形个数【详解】(1)如图所示:(2)若保持俯视图和左视图不变,则做多可有多少个小正方形如图:与原图比较,则每列小正方形添加数目分别:0+3+14(个)故答案为:4【点睛】本题考查作图三视图在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉本题画几何体的三视图时应注意小正方形的数目及位置