《2022年最新京改版九年级数学下册第二十四章-投影、视图与展开图定向练习试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年最新京改版九年级数学下册第二十四章-投影、视图与展开图定向练习试题(名师精选).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十四章 投影、视图与展开图定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,
2、最少由n个小正方体组成,则2mn()A10B11C12D132、如图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是( )ABCD3、一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“您”相对的字是()A牛B年C愉D快4、如图所示的几何体,它的左视图是( )ABCD5、如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是( )ABCD6、如图是一根空心方管,它的主视图是()ABCD7、如图所示几何体的左视图是( )ABCD8、如图是由6个同样大小的正方体摆成,将标有“1”的这个正方体去掉,所得几何体
3、( )A俯视图不变,左视图不变B主视图改变,左视图改变C俯视图改变,主视图改变D主视图不变,左视图改变9、如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,小方行走的路程AC()A7.2B6.6C5.7D7.510、如图所示的几何体,其左视图是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、请在右侧小方格内用阴影表示“从正面观察”得到的平面图形的示意图_2、在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有_个3、如图,小冰想用一条彩带缠绕圆柱4
4、圈,正好从A点绕到正上方的B点,已知圆柱底面周长是3m,高为5m,则所需彩带最短是_m4、若一个几何体的表面展开图如图所示,则该几何体棱的条数为_5、如图所示是从不同的方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为_(结果保留) 从正面看 从左面看 从上面看三、解答题(5小题,每小题10分,共计50分)1、如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图 2、我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图是一个由7个相同的小正方体搭成的几何体,请从图的正面、左面和上面看这个几何体,并在所给的图中画出各自的图形3、综合实
5、践(问题情境)某综合实践小组进行废物再利用的环保小卫士行动他们准备用废弃的宣传单制作装垃圾的无盖纸盒(操作探究)(1)若准备制作一个无盖的正方体形纸盒,如图,图形 经过折叠能围成无盖正方体形纸盒?(2)如图是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字? (3)如图,有一张边长为的正方形废弃宣传单,小华准备将其四个角各剪去一个小正方形,折成无盖长方体形纸盒请你在图中画出示意图,用实线表示剪切线,虚线表示折痕若四个角各剪去了一个边长为的小正方形,求这个纸盒的底面积和容积分别为多少?4、如图,由10个同样大小的小正方体搭成的几何体(1)请分别画出几何体从正面和从上面看到的形状图
6、:(2)设每个正方体的棱长为1,求出上图原几何体的表面积;(3)如果从这个几何体上取出一个小正方体,在表面标上整数a、b、c、d、e、f,然后将其剪开展开成平面图形如图所示放置,已知正方体相对的面上的数互为相反数,若整数d是最大的负整数,正整数e的平方等于本身,整数f表示五棱柱的总棱数,求下列代数式的值5、一个小立方体的六个面分别标有字母A,B,C,D,E,F,从三个不同方向看到的情形如图所示(1)A对面的字母是 ,B对面的字母是 ,E对面的字母是 (请直接填写答案)(2)若A=2x-1,C=-7,D=1,E=2x5,F= -9,且字母E与它对面的字母表示的数互为相反数,求A,B的值-参考答案
7、-一、单选题1、B【分析】根据几何体的主视图和俯视图,可得最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体【详解】解:由三视图可知:最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体,m4+3+29,n4+2+17,2mn29711故选B【点睛】本题主要考查了三视图确定小立方体个数以及代数式求值,解题的关键在于能够熟练掌握根据三视图判断小立方体的个数2、A【分析】根据“一线不过四,凹、田应弃之”可以判断所给展开图是否为正方体的表面展开图,逐项判断即可求解【详解】解:A、
8、折叠后才能围成一个正方体,故本选项符合题意;B、含有“田”字形,故本选项不符合题意;C、折叠后有一行两个面无法折起来,而且都缺个面,折叠后才不能围成一个正方体,故本选项不符合题意;D、含有“田”字形,折叠后才不能围成一个正方体,故本选项不符合题意;故选:A【点睛】本题主要考查了几何体的折叠和展开图形,熟练掌握“一线不过四,凹、田应弃之”可以判断所给展开图是否为正方体的表面展开图是解题的关键3、B【分析】根据正方体表面展开图的特征进行判断即可【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,“您”的对面是“年”,故选:B【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征
9、是正确判断的关键4、D【分析】左视图:从物体左面所看的平面图形,注意:看到的棱画实线,看不到的棱画虚线,据此进行判断即可【详解】解:如图所示,几何体的左视图是:故选:D【点睛】本题考查简单组合体的三视图,正确掌握观察角度是解题关键5、C【分析】根据左视图的定义,左视图就是物体由左向右方投影得到的视图,即可得出结论【详解】解:根据左视图的定义,该几何体的左视图是:故选:C 【点睛】此题考查了几何体左视图的判断,掌握左视图的定义是解题关键6、A【分析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看,是内外两个正方形,故选A【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视
10、图,注意看不到的线画虚线7、D【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都变现在左视图中【详解】解:从左视图看,易得到一个矩形,矩形中有一条横行的虚线,故选:D【点睛】本题考查简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型8、A【分析】根据几何体的三视图判断即可;【详解】根据已知图形,去掉标有“1”的这个正方体,主视图改变,俯视图和左视图不变;故选A【点睛】本题主要考查了几何体三视图的应用,准确分析判断是解题的关键9、D【分析】设出影长AB的长,利用相似三角形可以求得AB的长,然后在利用相似三角形求得AC的长即可【详解】解:AEOD,OGOD,AE/OG,AE
11、B=OGB,EAB=GOB,AEBOGB,即 ,解得:AB2m;OA所在的直线行走到点C时,人影长度增长3米,DCAB+3=5m,OD=OA+AC+CD=AC+10,FCGO,CFD=OGD,FCD=GOD,DFCDGO,即,解得:AC7.5m所以小方行走的路程为7.5m故选择:D【点睛】本题主要考查的是相似三角形在实际中的中心投影的应用,掌握相似三角形判断与性质,利用对应边成比例是解答本题的关键10、B【分析】根据左视图的定义(一般指由物体左边向右做正投影得到的视图)求解即可【详解】解:由左视图的定义可得:左视图为一个正方形,由于正方体内部有一个圆柱体,根据其方向可得左视图为:,故选:B【点
12、睛】题目主要考查三视图的作法,理解三视图的定义是解题关键二、填空题1、见解析【分析】按照简单组合体三视图的画法画出相应的图形即可【详解】解:如图:主视图有3列,从左往右每列小正方数形数目分别为3,1,2【点睛】本题考查简单组合体的三视图,理解视图的意义,掌握视图的画法是得出正确答案的前提2、12【分析】从俯视图中可以看出最底层碟子的个数及形状,从主视图可以看出碟子的层数和个数,从而算出总的个数【详解】解:由三视图可得三摞碟子数从左往右分别为5,4,3,则这个桌子上共有5+4+3=12个碟子故答案为:12【点睛】本题考查对三视图的理解应用及空间想象能力可从主视图上分清物体的上下和左右的层数,从俯
13、视图上分清物体的左右和前后位置,综合上述分析数出碟子的个数3、13【分析】把曲面展开变为平面,利用两点间线段最短,再根据勾股定理即可求解【详解】解:如图,线段AC即为所需彩带最短,由图可知,由勾股定理得,故答案为:13【点睛】本题考查两点间线段最短和勾股定理在生活中的应用将曲面问题变为平面问题是解答本题的关键4、15【分析】由平面图形的折叠及立体图形的表面展开图的特点还原几何体再解题即可【详解】解:由展开图折叠后可以围成五棱柱而五棱柱有15条棱,故答案为15【点睛】考查了几何体的展开图,熟记常见几何体的表面展开图特征,是解决此类问题的关键5、【分析】根据主视图确定出圆柱体的底面直径与高,然后根
14、据圆柱体的侧面积公式列式计算即可得解【详解】解:由图可知,圆柱体的底面直径为2,高为3,所以,侧面积故答案为:【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,解题的关键是根据主视图判断出圆柱体的底面直径与高三、解答题1、见解析【分析】从正面看有2排,左边3层,右边2层;从左面看1排,3层;从上面看2排,每排1层,再画图即可【详解】解:如图所示:【点睛】本题考查的是小正方体堆砌图形的三视图,掌握“三视图的含义”是画图的关键.2、见解析【分析】主视图有3列,每列小正方形数目分别为,;左视图有2列,每列小正方形数目分别为,;俯视图有3列,每行小正方形数目分别为,【详解】解
15、:如图所示:【点睛】此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键3、(1)C;(2)卫;(3)见解析;纸盒的底面积为,纸盒的容积为【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)根据题意,画出图形即可;根据正方体底面积、体积,即可解答【详解】解:(1)A有田字,故A不能折叠成无盖正方体;B只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C可以折叠成无盖正方体;D有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体故选C
16、(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)如图,当小正方形边长为时,纸盒的底面积为,纸盒的容积为答:纸盒的底面积为,纸盒的容积为【点睛】本题考查了展开图折叠成几何体,每一个面都有唯一的一个对面的展开图才能折叠成正方体还考查了列代数式,解答本题的关键是读懂题意4、(1)见解析;(2)38;(3)-1【分析】(1)由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,1,2;从左面看有3列,每列小正方形数目分别为3,2,1;据此可画出图形;(2)分别得到各个方向看的正方形面数,相加后乘1个面的面积即可求解;(3)根据已知条件得出d,
17、e,f的值,再根据正方体相对面的特点得到a,b,c的值,从而代入化简【详解】解:(1)如图所示:(2)(11)(62+62+62+2)=138=38故该几何体的表面积是38(3)整数d是最大的负整数,正整数e的平方等于本身,整数f表示五棱柱的总棱数,d=-1,e=1,f=15,由图可知:“a”与“d”相对,“b”与“f”相对,“c”与“e”相对,a=1,b=-15,c=-1,【点睛】本题考查了几何体的三视图画法,正方体展开图,由立体图形可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字5、(1)C,D,F;(2)3,3【分析】(1)观察三个正方体,与A相邻的字母有D、E、B、F,从而确定出A对面的字母是C,与B相邻的字母有C、E、A、F,从而确定与B对面的字母是D,最后确定出E的对面是F;(2)根据相反数的定义列出等式可求出x的值,然后代入代数式求出B、E的值即可【详解】(1)由图可知,与A相邻的字母有D、E、B、F则A对面的字母是C与B相邻的字母有C、E、A、F则B对面的字母是DE对面的字母是F故答案为:C,D,F;(2)字母E与它对面的字母表示的数互为相反数解得,【点睛】本题考查了简单几何体的应用、相反数的定义、代数式的求值,掌握立方体的特征判断出对立面是解题关键