《北师大版七年级数学下册第五章生活中的轴对称单元测试试题(名师精选).docx》由会员分享,可在线阅读,更多相关《北师大版七年级数学下册第五章生活中的轴对称单元测试试题(名师精选).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、七年级数学下册第五章生活中的轴对称单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列有关绿色、环保主题的四个标志中,是轴对称图形是( )A B C D 2、下列图形中,不一定是轴对称图形的是(
2、)A直角三角形B等腰三角形C等边三角形D正方形3、如图,在的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的为格点三角形,在图中与成轴对称的格点三角形可以画出( )A6个B5个C4个D3个4、下列图案是轴对称图形的是()ABCD5、下列图形中,不是轴对称图形的是( )ABCD6、如图,AD,BE,CF依次是ABC的高、中线和角平分线,下列表达式中错误的是( )AAECEBADC90CCADCBEDACB2ACF7、如图,在22正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的ABC为格点三角形,在图中可以画出与ABC成轴对称的格点三角形的个
3、数为( )A2个B3个C4个D5个8、自新冠肺炎疫情发生以来,莆田市积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图是()A有症状早就医B打喷捂口鼻C防控疫情我们在一起D勤洗手勤通风9、如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是( )ABCD10、下列说法正确的是()A如果两个三角形全等,则它们必是关于某条直线成轴对称的图形B如果两个三角形关于某条直线成轴对称,那么它们是全等三角形C等腰三角形是关于一条边上的中线成轴对称的图形D一条线段是关于经过该线段中点的直线成轴对称图形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20
4、分)1、如图,在33的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形(包括网格)构成一个轴对称图形,那么涂法共有_种2、如图,把四边形ABCD纸条沿MN对折,若ADBC,52,则AMN_3、如图,MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若MON=38,则GOH=_ 4、梯形(如图)是有由一张长方形纸折叠而成的,这个梯形的面积是(_)5、如图,在ABC中,BAC80,C45,AD是ABC的角平分线,那么ADB_度三、解答题(5小题,每小题10分,共计50分)1、如图,平面直角坐标系中,ABC的顶点
5、A(0,2),B(2,4),C(4,1);(1)画出与ABC关于轴对称的图形A1B1C1,并写出点B1的坐标;(2)四边形AA1C1C的面积为_2、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上将AEF沿折痕EF翻折,点A落在点A处;将DEG沿折痕EG翻折,点D落在点D处(1)如图1,若AEF40,DEG35,求AED的度数;(2)如图1,若AED,求FEG的度数(用含的式子表示);(3)如图2,若AED,求FEG的度数(用含的式子表示)3、如图,在边长为1的正方形网格中有一个ABC,完成下列各图(用无刻度的直尺画图,保留作图痕迹)(1)作ABC关于直线MN对称的A1B1C1
6、;(2)求ABC的面积;(3)在直线MN上找一点P,使得PA+PB最小4、如图,已知ABC和直线l,作出ABC关于直线l的对称图形ABC(不写作法,保留作图痕迹)5、如图,点A、B、C都在方格纸的格点上,方格纸中每个小正方形的边长均为1(1)画出ABC关于直线l对称的DEF;(2)结合所画图形,在直线l上画出点P,使PD+PE的长度最小-参考答案-一、单选题1、B【分析】结合轴对称图形的概念进行求解【详解】解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意故选:B【点睛】本题考查了轴对称图形的概
7、念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、A【分析】根据轴对称图形的概念求解即可【详解】解:根据轴对称的定义,等腰三角形、等边三角形、正方形一定是轴对称图形,直角三角形不一定是轴对称图形,故选:A【点睛】本题主要考查了轴对称图形的知识,掌握轴对称图形的概念是解决此类问题的关键3、A【分析】直接利用轴对称图形的性质分别得出符合题意的答案【详解】解:符合题意的三角形如图所示:分三类对称轴为横向:对称轴为纵向:对称轴为斜向:满足要求的图形有6个故选:A【点睛】本题主要考查利用轴对称来设计轴对称图形,关键是要掌握轴对称的性质和轴对称图形的含义4、C【分析】根据轴对称图形的定义逐项识别
8、即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形【详解】解:选项A、B、D均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键5、A【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义逐一判断即可得到答案.【详解】解:选项A中的图形不是轴对称图形,故A符合题意;选项B中的图形是轴
9、对称图形,故B不符合题意;选项C中的图形是轴对称图形,故C不符合题意;选项D中的图形是轴对称图形,故D不符合题意;故选A【点睛】本题考查的是轴对称图形的识别,掌握“轴对称图形的定义”是解本题的关键.6、C【分析】根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中,连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高求解即可【详解】解:A
10、、BE是ABC的中线,所以AECE,故本表达式正确;B、AD是ABC的高,所以ADC90,故本表达式正确;C、由三角形的高、中线和角平分线的定义无法得出CADCBE,故本表达式错误;D、CF是ABC的角平分线,所以ACB2ACF,故本表达式正确故选:C【点睛】本题考查了三角形的高、中线和角平分线的定义,是基础题,熟记定义是解题的关键7、D【分析】在网格中画出轴对称图形即可【详解】解:如图所示,共有5个格点三角形与ABC成轴对称,故选:D【点睛】本题考查了轴对称,解题关键是熟练掌握轴对称的定义,准确画出图形8、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合
11、,这个图形叫做轴对称图形进行解答即可【详解】解:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、是轴对称图形,故C符合题意;D、不是轴对称图形,故D不符合题意故选C.【点睛】本题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键9、A【分析】根据剪下的图形为等腰直角三角形,展开后为正方形,可知剪去的仍为正方形,由此即知答案【详解】由题意知,剪下的图形为等腰直角三角形,展开后为正方形,所以剪去的为正方形,原图为正方形,其还原的过程如下:故选:A【点睛】本题考查了图形的折叠及裁剪,关键是根据折叠后裁剪的过程还原,对学生的想象能力有更高的要求10、B【分析】根据全等
12、三角形的定义以及轴对称的性质可判断选项A和B;根据等腰三角形的性质可判断选项C;根据线段的性质可判断选项D【详解】解:A如果两个三角形全等,则它们不一定关于某条直线成轴对称的图形,故本选项不合题意;B如果两个三角形关于某条直线成轴对称,那么它们是全等三角形,说法正确,故本选项符合题意;C等腰三角形是以底边中线所在直线为对称轴的轴对称图形或者说等腰三角形被中线所在直线分成的两个三角形成轴对称,故本选项不合题意;D一条线段是关于经过该线段中点且和线段垂直的直线成轴对称的图形,故本选项不合题意;故选:B【点睛】本题考查了轴对称的性质,全等三角形的性质,线段垂直平分线的性质,等腰三角形的性质,关键是掌
13、握性质进行逐一判断二、填空题1、5【分析】直接利用轴对称图形的性质分析得出答案【详解】解:如图所示:所标数字之处都可以构成轴对称图形故答案为:5【点睛】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键2、【分析】如图,设点对应点为,则根据折叠的性质求得,根据平行的性质可得,进而求得【详解】如图,设点对应点为, 根据折叠的性质可得,52,故答案为:【点睛】本题考查了折叠的性质,平行线的性质,掌握以上性质是解题的关键3、76【分析】连接OP,根据轴对称的性质可得GOM=MOP,PON=NOH,然后求出GOH=2MON,代入数据计算即可得解【详解】解:如图,连接OP,P点关于OM
14、的轴对称点是G,P点关于ON的轴对称点是H,GOM=MOP,PON=NOH,GOH=GOM+MOP+PON+NOH=2MON,MON=38,GOH=238=76故答案为:76【点睛】本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键4、69【分析】通过观察图形可知,这个梯形上底是9cm,下底是(9+5)cm,高是6cm,根据梯形的面积公式:S=(a+b)h2,把数据代入公式解答【详解】解:根据折叠可得梯形上底是9cm,下底是(9+5)cm,高是6cm(9+9+5)62=2362=1382=69()故答案为:69【点睛】此题主要考查梯形面积公式的灵活运用,关键是熟记公式5、【分析】根据
15、角平分线的定义求得,进而根据三角形的外角性质即可求得的度数【详解】BAC80,AD是ABC的角平分线,又C45故答案为:【点睛】本题考查了角平分线的定义,三角形的外角性质,掌握以上知识是解题的关键三、解答题1、(1)见解析;(2,4);(2)12【分析】(1)根据关于x轴对称的点的坐标特征写出顶点A1,B1,C1的坐标,然后连线即可;(2)作出图象可得四边形为等腰梯形,根据梯形面积公式求解即可【详解】解:(1)先找出对称点A1(0,2),B1(2,4),C1(4,1),依次连接,如图,A1B1C1为所作;B1(2,4);(2)如图所示,四边形为等腰梯形,故答案为:12【点睛】本题考查了作轴对称
16、图形:先找对称点然后依次连接即可,结合图象求解是解题关键2、(1);(2);(3)【分析】(1)由折叠的性质,得到,然后由邻补角的定义,即可求出答案;(2)由折叠的性质,先求出,然后求出FEG的度数即可;(3)由折叠的性质,先求出,然后求出FEG的度数即可【详解】解:(1)将AEF沿折痕EF翻折,点A落在点A处;将DEG沿折痕EG翻折,点D落在点D处,;(2)根据题意,则,;(3)根据题意,;【点睛】本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,3、(1)作图见解析;(2);(3)作图见解析【分析】(1)分别作出三个顶点关于直线MN的对称点,再首尾顺次连接即可;
17、(2)用长为2、宽为3的矩形面积减去四周三个直角三角形的面积即可得出答案;(3)连接AB1,与直线MN的交点即为所求【详解】解:(1)如图所示,A1B1C1即为所求(2)SABC2321213;(3)如图所示,点P即为所求【点睛】本题主要考查了利用轴对称的性质进行格点作图,准确分析作图是解题的关键4、见解析【分析】分别作点点点关于直线的对称点,然后连接,即可得到ABC关于直线的轴对称图形【详解】解:如图:即为所作:【点睛】本题考查了轴对称变换,作轴对称图形的依据是轴对称的性质,基本作法是:先确定图形的关键点;利用轴对称的性质作出关键点的对称点;按原图形中的方式顺次连接对称点5、(1)见解析;(2)见解析【分析】根据题意,先分别找到点A、B、C关于直线l的对称点D、E、F,即可求解;(2)连接BD交直线l于点P,点P即为所求的点,根据轴对称图形的性质,可得PB=PE,从而得到当B、P、D三点共线时,PD+PE的长度最小,即可求解【详解】解:(1)如图所示,DEF即为所求(2)连接BD交直线l于点P,点P即为所求的点,理由如下:点B点E关于直线l对称,PB=PE,PD+PE=PD+PBBD,当B、P、D三点共线时,PD+PE的长度最小【点睛】本题主要考查了轴对称图形,熟练掌握轴对称图形的性质是解题的关键