北师大版七年级数学下册第五章生活中的轴对称专项训练试题(名师精选).docx

上传人:可****阿 文档编号:32636172 上传时间:2022-08-09 格式:DOCX 页数:20 大小:1.04MB
返回 下载 相关 举报
北师大版七年级数学下册第五章生活中的轴对称专项训练试题(名师精选).docx_第1页
第1页 / 共20页
北师大版七年级数学下册第五章生活中的轴对称专项训练试题(名师精选).docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《北师大版七年级数学下册第五章生活中的轴对称专项训练试题(名师精选).docx》由会员分享,可在线阅读,更多相关《北师大版七年级数学下册第五章生活中的轴对称专项训练试题(名师精选).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、七年级数学下册第五章生活中的轴对称专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面是福州市几所中学的校标,其中是轴对称图形的是()ABCD2、下列图案,是轴对称图形的为()ABCD3、如图点D

2、,E分别在ABC的边BC,AB上,连接AD、DE,将ABC沿直线DE折叠后,点B与点A重合,已知AC6cm,ADC的周长为14cm,则线段BC的长为( )A6cmB8cmC12cmD20cm4、中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术2006年5月20日,剪纸艺术遗产经国务院批准列入第一批国家级非物质文化遗产名录2009年9月28日至10月2日举行的联合国教科文组织保护非物质文化遗产政府间委员会第四次会议上,中国申报的中国剪纸项目入选“人类非物质文化遗产代表作名录”下列四个剪纸图案是轴对称图形的为( )ABCD5、下列四个标志中,是轴对称图形的是( )

3、ABCD6、下列图案中,不是轴对称图形的为( )ABCD7、下列图案是轴对称图形的是()ABCD8、下列四个图标中,是轴对称图形的是( )ABCD9、如图,直线MN是四边形MANB的对称轴,点P在MN上则下列结论错误的是( )AAMBMBAPBNCANMBNMDMAPMBP10、下列图形为轴对称图形的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点P(a,3)、Q(2,b)关于x轴对称,则a+b_2、如图将一条两边互相平行的纸带按如图折叠,若EFGEGD=150,则EGD=_3、汉字中、日、田等都可看作是轴对称图形,请你再写出一个这样的汉字:_4、

4、如图,如图,AOB=45,点M、N分别在射线OA、OB上,MN=7,OMN的面积为14,P是直线MN上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,P1OP2_,OP1P2的面积最小值为_5、内部有一点P,点P关于的对称点为M,点P关于的对称点为N,若,则的周长为_三、解答题(5小题,每小题10分,共计50分)1、已知,在如图所示的网格中建立平面直角坐标系后,ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(2,4)(1)画出ABC关于y轴的对称图形A1B1C1;(2)借助图中的网格,请只用直尺(不含刻度)完成以下要求:(友情提醒:请别忘了标注

5、字母!)在第一象限内找一点P,使得P到AB、AC的距离相等,且PAPB;在x轴上找一点Q,使得QAB的周长最小,则Q点的坐标(_,_)2、如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示,用坐标描述这个运动,找出小球运动的轨迹上几个关于直线l对称的点,如果小球起始时位于(1,0)处,仍按原来方向击球,请你画出这时小球运动的轨迹3、如图,把下列图形补成关于直线l对称的图形4、在44的方格中有五个同样大小的正方形如图摆放,请分别在甲、乙、丙三个图中添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,并画出图形5、如图,P为ABC的外角平分线上任一

6、点求证:PBPCABAC-参考答案-一、单选题1、A【分析】结合轴对称图形的概念进行求解即可【详解】A、是轴对称图形,本选项符合题意;B、不是轴对称图形,本选项不合题意;C、不是轴对称图形,本选项不合题意;D、不是轴对称图形,本选项不合题意故选:A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、D【分析】根据轴对称图形的概念对个图形分析判断即可得解【详解】解:A、此图形不是轴对称图形,不符合题意;B、此图形不是轴对称图形,不合题意;C、此图形是轴对称图形,不合题意;D、此图形是轴对称图形,合题意;故选D【点睛】本题考查了轴对称图形的概念轴对称图形的关

7、键是寻找对称轴,图形两部分折叠后可重合3、B【分析】由折叠的性质得出BDAD,由题意得出AD+DCBD+DCBC即可得出答案【详解】解:ABC沿直线DE折叠后,点B与点A重合,BDAD,AC6cm,ADC的周长为14cm,AD+DC1468cm,BD+DCBC8cm,故选:B【点睛】此题主要考查了翻折变换的性质,根据题意得出ADBD是解题关键4、A【分析】轴对称图形是指在平面内沿着一条直线折叠,直线两旁的部分能够完全重合的图形,据此判断各个选项即可【详解】解:根据轴对称图形的定义可得:只有A选项符合轴对称图形的定义,故选:A【点睛】题目主要考查轴对称图形的识别,理解轴对称图形的定义是解题关键5

8、、D【分析】利用轴对称图形的定义进行解答即可【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形6、D【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此逐项判断即可【详解】解:A中图形是轴对称图形,不符合题意;B中图形是轴对称图形,不符合题意;C中图形是轴对称图形,不符合题意;D中图形

9、不是轴对称图形,符合题意,故选:D【点睛】本题考查轴对称的定义,理解定义,找准对称轴是解答的关键7、D【分析】根据轴对称图形的定义,即是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形叫轴对称图形判断即可;【详解】由已知图形可知, 是轴对称图形;故选D【点睛】本题主要考查了轴对称图形的识别,准确分析判断是解题的关键8、C【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行求解即可【详解】解:A、不是轴对称图形,故不符合题意;B、不是轴对称图形,故不符合题意;C、是轴对称图形,故符合题意;D、不是轴对称图形,故不符合题

10、意;故选C【点睛】本题主要考查了轴对称图形的识别,解题的关键在于能够熟知轴对称图形的定义9、B【分析】根据轴对称的性质可以得到AM=BM,ANM=BNM,MAP=MBP,由此即可得到答案【详解】解:直线MN是四边形MANB的对称轴,AM=BM,ANM=BNM,MAP=MBP,故A、C、D选项不符合题意;根据现有条件,无法推出AP=BN,故B选项符合题意;故选B【点睛】本题主要考查了轴对称图形的性质,解题的关键在于能够熟练掌握轴对称图形的性质:成轴对称图形的两个图形全等,如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线10、A【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相

11、重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【详解】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置二、填空题1、-5【分析】根据关于x轴对称的点横坐标相同,纵坐标互为相反数即可得出结果【详解】解:点P(a,3)与点Q(2,b)关于x轴对称,a2,b3,a+b235故答案为:5【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度适

12、中2、【分析】先根据平行线的性质得到,结合已知EFGEGD=150,解得EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题【详解】解:EFGEGD=150,EGD=折叠故答案为:【点睛】本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键3、一(答案不唯一)【分析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此解答即可【详解】解:由轴对称图形的定义可得:一、二、三、甲、出、本、王、平都是轴对称图形故答案为:一(答案不唯一)【点睛】此题主要考查了轴对称图形,掌握轴对称图形的意

13、义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合4、90 8 【分析】连接OP,过点O作OHNM交NM的延长线于H首先利用三角形的面积公式求出OH,再证明OP1P2是等腰直角三角形,OP最小时,OP1P2的面积最小【详解】解:连接OP,过点O作OHNM交NM的延长线于HSOMN= MNOH=14,MN=7,OH=4,点P关于OA对称的点为P1,点P关于OB对称点为P2,AOP=AOP1,POB=P2OB,OP=OP1=OP2AOB=45,P1OP2=2(POA+POB)=90,OP1P2是等腰直角三角形,OP=OP1最小时,OP1P2的面积最小,根据垂线段最短

14、可知,OP的最小值为4,OP1P2的面积的最小值=44=8,故答案为90;8【点睛】本题考查轴对称,三角形的面积,垂线段最短等知识,解题的关键是证明OP1P2是等腰直角三角形,属于中考常考题型5、15【分析】根据轴对称的性质可证MON=2AOB=60;再利用OM=ON=OP,即可求出的周长【详解】解:根据题意可画出下图,OA垂直平分PM,OB垂直平分PNMOA=AOP,NOB=BOP;OM=OP=ON=5cmMON=2AOB=60为等边三角形。MON的周长=35=15故答案为:15【点睛】此题考查了轴对称的性质及相关图形的周长计算,根据轴对称的性质得出MON=2AOB=60是解题关键三、解答题

15、1、(1)见详解;(2)见详解;2,0.【分析】(1)根据题意画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始,连接这些对称点,就得到原图形的轴对称图形;(2)由题意作BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;由题意作点B关于x轴对称的点B,连接AB,交x轴于Q,则点Q即为所求根据直线AB的解析式即可得出点Q的坐标【详解】解:(1)如图所示,A1B1C1即为所求;(2)如图所示,作BAC的角平分线,作AB的垂直平分线,交于点P,则点P即为所求;如图所示,作点B关于x轴对称的点B,连接AB,交x轴于Q,则点Q即为所求,A(1,1),B(4,-2),可设直线AB为y

16、=kx+b,则,解得:,y=-x+2,当y=0时,-x+2=0,解得x=2,此时点Q的坐标为(2,0)故答案为:2,0.【点睛】本题主要考查利用轴对称进行作图,解决问题的关键是掌握角平分线的性质,中垂线的性质以及待定系数法求一次函数解析式,解题时注意两点之间,线段最短2、见解析【分析】根据题意,根据对称性画出图形即可解决问题【详解】解:小球运动轨迹是(3,0)(0,3)(1,4)(5,0)(8,3)(7,4)(3,0);小球运动的轨迹如图所示,图中点A、B,点C、D,点E、F关于直线l对称如果小球起始时位于(1,0)处,仍按原来方向击球,小球运动的轨迹如图所示,【点睛】本题考查了利用轴对称设计

17、图案、轨迹等知识,解题的关键是利用对称性解决问题,属于中考常考题型3、见解析【分析】根据轴对称图形的性质,先找出各关键点关于直线l的对称点,再顺次连接即可【详解】解:关于直线l对称的图形如图所示 【点睛】本题考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质,几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始4、见解析【分析】根据轴对称图形的性质找出格点即可【详解】解:如图所示【点睛】本题考查的是利用轴对称设计图案,解答此题要明确轴对称的性质,并据此构造出轴对称图形,然后将对称部分涂黑,即为所求5、见解析【分析】分两种情况讨论:当点P与点A不重合时,在BA延长线上取一点D,使ADAC,连接PD可证得PADPAC,再利用三角形的三边关系,可得PBPCABAC当点P与点A重合时,可得PBPCABAC,即可求证【详解】证明:如图,当点P与点A不重合时,在BA延长线上取一点D,使ADAC,连接PDP为ABC的外角平分线上一点,12 ,在PAD和PAC中PADPAC(SAS),PDPC,在PBD中,PBPDBD,BDABAD,PBPCABAC当点P与点A重合时,PBPCABAC综上,PBPCABAC【点睛】本题主要考查了全等三角形的判定和性质,三角形的三边关系,能利用分类讨论思想解答是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁