《2022年最新浙教版初中数学七年级下册第四章因式分解专项练习试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年最新浙教版初中数学七年级下册第四章因式分解专项练习试题(含答案解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解专项练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)2、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解3、下列分解因式中,x2+2xy+x=x(
2、x+2y);x2+4x+4=(x+2)2;x2+y2=(x+y)(xy).正确的个数为()A.3B.2C.1D.04、下列关于2300+(2)301的计算结果正确的是()A.2300+(2)301230023012300223002300B.2300+(2)3012300230121C.2300+(2)301(2)300+(2)301(2)601D.2300+(2)3012300+230126015、已知,则 的值是( )A.B.C.45D.726、下列因式分解正确的是( )A.B.C.D.7、下列等式从左到右的变形,属于因式分解的是( )A.a2b2(ab)(ab)B.a(xy)axayC.
3、x22x1x(x2)1D.(x1)(x3)x24x38、把多项式x2+ax+b分解因式,得(x+3)(x4),则a,b的值分别是()A.a1,b12B.a1,b12C.a1,b12D.a1,b129、下列等式从左到右的变形中,属于因式分解的是()A.B.C.D.10、下列多项式因式分解正确的是( )A.B.C.D.11、已知,则的值为( )A.0和1B.0和2C.0和-1D.0或112、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,现将3a(x21)3b(x21)因式分解,结果呈现的密码信息可能是()A
4、.我爱学B.爱新化C.我爱新化D.新化数学13、下列各式中与b2a2相等的是()A.(ba)2B.(a+b)(ab)C.(a+b)(a+b)D.(a+b)(ab)14、已知下列多项式:;.其中,能用完全平方公式进行因式分解的有( )A.B.C.D.15、下列各式从左到右的变形是因式分解的是( )A.axbxc(ab)xcB.(ab)(ab)a2b2C.(ab)2a22abb2D.a25a6(a6)(a1)二、填空题(10小题,每小题4分,共计40分)1、分解因式:_2、分解因式:_3、因式分解:_4、因式分解:_5、由多项式乘法:(x+a)(x+b)x2+(a+b)x+ab,将该式子从右到左使
5、用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab(x+a)(x+b),请用上述方法将多项式x25x+6因式分解的结果是 _6、已知,则_7、若,则多项式的值为_8、若,则_9、分解因式:_10、因式分解:_三、解答题(3小题,每小题5分,共计15分)1、分解因式:3x318x2+27x2、(1)计算:(2)因式分解:3、(1)分解因式: (2)计算:-参考答案-一、单选题1、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16aa(x28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式
6、的方法.2、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义判断即可.【详解】解:,属于整式乘法,不属于因式分解;,等式从左到右的变形属于因式分解;故选:D.【点睛】本题考查了整式的乘法和因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解.3、C【分析】直接利用提取公因式法以及公式法分别分解因式判断即可.【详解】解:x2+2xy+x=x(x+2y+1),故错误;x2+4x+4=(x+2)2,故正确;-x2+y2=(y+x)(y-x),故错误;故选:C.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确运
7、用乘法公式是解题关键.4、A【分析】直接利用积的乘方运算法则将原式变形,再利用提取公因式法分解因式计算得出答案.【详解】2300+(2)301230023012300223002300.故选:A.【点睛】此题主要考查了提取公因式法分解因式以及有理数的混合运算,正确将原式变形是解题关键.5、D【分析】直接利用完全平方公式:a22ab+b2(ab)2,得出a,b的值,进而得出答案.【详解】解:x22ax+b(x3)2x26x+9,2a6,b9,解得:a3,故b2a2923272.故选:D.【点睛】此题主要考查了公式法分解因式,正确记忆完全平方公式是解题关键.6、C【分析】利用平方差公式、完全平方公
8、式、提公因式法分解因式,分别进行判断即可.【详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误;故选:C.【点睛】此题主要考查了公式法分解因式,关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a22ab+b2=(ab)2.7、A【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义逐一判断即可得答案.【详解】A、a2b2(ab)(ab),把一个多项式化为几个整式的积的形式,属于因式分解,故此选项符合题意;B、a(xy)axay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x22x1
9、x(x2)1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x1)(x3)x24x3,是整式的乘法,不是因式分解,故此选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式,叫因式分解;熟练掌握定义是解题关键.8、A【分析】首先利用多项式乘法将原式展开,进而得出a,b的值,即可得出答案.【详解】解:多项式x2+ax+b分解因式的结果为(x+3)(x-4),x2+ax+b=(x+3)(x-4)=x2-x-12,故a=-1,b=-12,故选:A.【点睛】此题主要考查了多项式乘法,正确利用乘法公式用将原式展开是解题关键.9、A【
10、分析】根据因式分解定义,把一个多项式化为几个整式的积的形式为因式分解,利用因式分解定义对选项进行一一判断即可.【详解】解:A. 是因式分解,故选项A正确; B. 是多项式乘法,故选项B不正确;C. 不是因式分解,故选项C不正确; D. 是单项式乘的逆运算,不是因式分解,故选项D不正确.故选择A.【点睛】本题考查多项式的因式分解,掌握多项式的因式分解定义与特征是解题关键.10、C【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】解:A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. ,故D选项错误,故选C.【点睛】本题考查了提公因式法
11、,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.11、B【分析】根据已知条件得出(x-1)3-(x-1)=0,再通过因式分解求出x的值,然后代入要求的式子进行计算即可得出答案.【详解】解:,x-1=(x-1)3,(x-1)3-(x-1)=0,(x-1)(x-1)2-1=0,(x-1)(x-1+1)(x-1-1)=0,x(x-1)(x-2)=0,x1=0,x2=1,x3=2,x2-x=0或x2-x=12-1=0或x2-x=22-2=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,解题的关键是通过式子变形求出x的值.12、C【分析】把所给的式子运用提公因式
12、和平方差公式进行因式分解,查看对应的字即可得出答案.【详解】解:,x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,结果呈现的密码信息可能是:我爱新化,故选:C.【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法和套用平方差公式.13、C【分析】根据平方差公式直接把b2a2分解即可.【详解】解:b2a2(ba)(b+a),故选:C.【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式.平方差公式:a2-b2=(a+b)(a-b).14、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:不能用完全平方公式分解;,能用完全平方公式分解;,能用完
13、全平方公式分解;,能用完全平方公式分解;故选:D.【点睛】本题考查了公式法分解因式,掌握a22ab+b2=(ab)2是解题的关键.15、D【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了
14、分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.二、填空题1、【分析】先提出公因式 ,再利用平方差公式进行因式分解即可.【详解】解:,故答案为:.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法提公因式法、公式法、十字相乘法、分组分解法,还要注意分解彻底,是解题的关键.2、【分析】根据提公因式因式分解求解即可.【详解】解:,故答案为:.【点睛】本题考查了提公因式法因式分解,正确找出公因式是解本题的关键.3、【分析】先把原式化为 再利用平方差公式分解因式,再把其中一个因式按照平方差公式继续
15、分解,从而可得答案.【详解】解:原式,故答案为:.【点睛】本题考查的是利用平方差公式分解因式,注意分解因式一定要分解到每个因式都不能再分解为止.4、【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【详解】解:3x2-3y2=3(x2-y2)=3(x+y)(x-y).故答案为:3(x+y)(x-y).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5、【分析】根据“十字相乘法”的方法进行因式分解即可.【详解】故答案为:.【点睛】本题考查了十字相乘法因式分解,理解题目中的方法是
16、解题的关键.6、【分析】根据题意平方差公式进行计算即可求得答案.【详解】解:.故答案为:.【点睛】本题考查平方差公式,熟练掌握平方差公式是解题的关键.7、3【分析】将多项式多项式a2+b2+c2abbcac分解成(ab)2+(ac)2+(bc)2,再把a,b,c代入可求.【详解】解:;a2+b2+c2abbcac(2a2+2b2+2c22ab2ac2bc)(ab)2+(ac)2+(bc)2,a2+b2+c2abbcac(1+4+1)3;故答案为:3.【点睛】本题考查了因式分解的应用,关键是将多项式配成完全平方形式.8、2022【分析】根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入
17、求解即可.【详解】故填“2022”.【点睛】本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.9、【分析】会利用公式进行因式分解,对另两项提取公因式,再提取即可因式分解.【详解】解:,故答案为:.【点睛】本题主要考查了提取公因式法以及公式法分解因式,解题的关键是正确运用公式法分解因式.10、【分析】直接提取公因式整理即可.【详解】解:,故答案是:.【点睛】本题考查了提取公因式因式分解,解题的关键是找准公因式.三、解答题1、【分析】先提公因式,再根据完全平方公式因式分解即可.【详解】解:原式【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.2、(1)-15;(2)【分析】(1)先算乘方,再算括号内的,再算乘法,最后算加减;(2)利用完全平方公式分解.【详解】解:(1)=-15;(2)=【点睛】本题考查了有理数的混合运算,因式分解,解题的关键是掌握运算法则和完全平方公式.3、(1);(2)【分析】(1)利用提公因式法和完全平方公式因式分解;(2)根据单项式乘单项式的运算法则计算.【详解】解:(1)原式x(x22x+1)x(x1)2;(2)原式6x5y3.【点睛】本题考查的是多项式的因式分解、单项式乘单项式,掌握提公因式法和完全平方公式因式分解的一般步骤、单项式乘单项式的运算法则是解题的关键.