2022年浙教版初中数学七年级下册第四章因式分解专项练习试题.docx

上传人:可****阿 文档编号:32539450 上传时间:2022-08-09 格式:DOCX 页数:22 大小:430.93KB
返回 下载 相关 举报
2022年浙教版初中数学七年级下册第四章因式分解专项练习试题.docx_第1页
第1页 / 共22页
2022年浙教版初中数学七年级下册第四章因式分解专项练习试题.docx_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2022年浙教版初中数学七年级下册第四章因式分解专项练习试题.docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解专项练习试题.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解专项练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各式从左到右的变形是因式分解为( )A.B.C.D.2、下列各式中,正确的因式分解是( )A.B.C.D.3、已知下列多项式:;.其中,能用完全平方公式进行因式分解的有( )A.B.C.D.4、下列各式中,不能用完全平方公式分解的个数为( );.A.1个B.2个C.3个D.4个5、已知mn2,则m2

2、n24n的值为()A.3B.4C.5D.66、下列各式从左到右的变形中,是因式分解的为( ).A.B.C.D.7、如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:213(1)3,263313,2和26均为和谐数.那么,不超过2019的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.92628、下面从左到右的变形中,因式分解正确的是()A.2x24xy2x(x+2y)B.x2+9(x+3)2C.x22x1(x1)2D.(x+2)(x2)x249、若,则的值为( )A.2B.3C.4D.610、下列多项式中有因式x1的是()x2+x2;x2

3、+3x+2;x2x2;x23x+2A.B.C.D.11、下列因式分解正确的是( )A.B.C.D.12、下列等式中,从左到右是因式分解的是( )A.B.C.D.13、把多项式x2+mx+35进行因式分解为(x5)(x+7),则m的值是()A.2B.2C.12D.1214、下列多项式:;.能用公式法分解因式的是( )A.B.C.D.15、下列多项式能用公式法分解因式的是()A.m2+4mnB.m2+n2C.a2+ab+b2D.a24ab+4b2二、填空题(10小题,每小题4分,共计40分)1、分解因式:3x2y12xy2_2、若a+b2,ab3,则代数式a3b+2a2b2+ab3的值为_3、下列

4、多项式:;,它们的公因式是_4、因式分解a39a_5、已知,则的值为_6、若ab0,则a2b2_0(填“”,“”或“”)7、将12张长为a,宽为b(ab)的小长方形纸片,按如图方式不重叠地放在大长方形ABCD内,未被覆盖的部分用阴影表示,若阴影部分的面积是大长方形面积的,则小长方形纸片的长a与宽b的比值为 _8、分解因式:3a(xy)2b(yx)_9、将多项式因式分解_10、分解因式:12a2b9ac_三、解答题(3小题,每小题5分,共计15分)1、(画图痕迹用黑色签字笔加粗加黑)如图,正方形纸片A类,B类和长方形纸片C类若干张,(1)请你选取适当数量的三种纸片,拼成一个长为、宽为的长方形,画

5、出拼好后的图形观察拼图共用_张A类纸片,_张B类纸片,_张C类纸片,通过面积计算可以发现=_(2)请你用这三类卡片拼出面积为的长方形,画出拼好后的图形观察拼图共用_张A类纸片,_张B类纸片,_张C类纸片,通过面积计算可以发现_利用拼图,把下列多项式因式分解=_;_2、因式分解:x316x3、分解因式:3x318x2+27x-参考答案-一、单选题1、D【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断即可.【详解】A. ,属于整式的乘法运算,故本选项错误;B. ,属于整式的乘法运算,故本选项错误;C. 左边和右边不相等,故本选项错误;D. ,符合因式分解的定义,故本选项

6、正确;故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.2、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.3、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:不能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;故选:D.【点睛】本题考查了公

7、式法分解因式,掌握a22ab+b2=(ab)2是解题的关键.4、C【分析】分别利用完全平方公式分解因式得出即可.【详解】解:x2-10x+25=(x-5)2,不符合题意;4a2+4a-1不能用完全平方公式分解;x2-2x-1不能用完全平方公式分解;m2+m=-(m2-m+)=-(m-)2,不符合题意;4x4x2+不能用完全平方公式分解.故选:C.【点睛】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.5、B【分析】先根据平方差公式,原式可化为,再把已知代入可得,再应用整式的加减法则进行计算可得,代入计算即可得出答案.【详解】解:=把代入上式,原式=,把代入上式,原式=2

8、2=4.故选:B.【点睛】本题考查了运用平方差公式进行因式分解,解题的关键是熟练掌握平方差公式.6、B【分析】根据因式分解的定义把一个多项式化成几个整式的积的形式,叫因式分解.然后对各选项逐个判断即可.【详解】解:A、两因式之间用加号连结,是和的形式不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、将积化为和差形式,是多项式乘法运算,不是因式分解,故本选项不符合题意;D、两因式之间用加号连结,是和的形式,不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键 .7、B【分析】根据“和谐数”的概念找出公式:(2

9、k+1)3(2k1)32(12k2+1)(其中k为非负整数),然后再分析计算即可.【详解】解:(2k+1)3(2k1)3(2k+1)(2k1)(2k+1)2+(2k+1)(2k1)+(2k1)22(12 k2+1)(其中 k为非负整数),由2(12k2+1)2019得,k9,k0,1,2,8,9,即得所有不超过2019的“和谐数”,它们的和为13(1)3+(3313)+(5333)+(173153)+(193173)193+16860.故选:B.【点睛】本题考查了新定义,以及立方差公式,有一定难度,重点是理解题意,找出其中规律是解题的关键所在.8、A【分析】根据因式分解是把一个多项式转化成几个

10、整式乘积的形式,可得答案.【详解】解:A、把一个多项式转化成两个整式乘积的形式,故A正确;B、等式不成立,故B错误;C、等式不成立,故C错误;D、是整式的乘法,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.9、C【分析】把变形为,代入a+b=2后,再变形为2(a+b)即可求得最后结果.【详解】解:a+b=2,a2-b2+4b=(a-b)(a+b)+4b,=2(a-b)+4b,=2a-2b+4b,=2(a+b),=22,=4.故选:C.【点睛】本题考查了代数式求值的方法,同时还利用了整体思想.10、D【分析】根

11、据十字相乘法把各个多项式因式分解即可判断.【详解】解:x2+x2;x2+3x+2;x2x2;x23x+2.有因式x1的是.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.11、C【分析】利用平方差公式、完全平方公式、提公因式法分解因式,分别进行判断即可.【详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误;故选:C.【点睛】此题主要考查了公式法分解因式,关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a22ab+b2=(ab)2.12、B【分析】根据因式分解的定义:把一

12、个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.13、B【分析】根据整式乘法法则进行计算(x5)(x+7)的结果,然后根据多项式相等进行对号入座.【详解】解:(x5)(x+7),故选:B.【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数相等.14、C【分析】

13、根据公式法的特点即可分别求解.【详解】不能用公式法因式分解;,可以用公式法因式分解;不能用公式法因式分解;=,能用公式法因式分解;=,能用公式法因式分解.能用公式法分解因式的是故选C.【点睛】此题主要考查因式分解,解题的关键是熟知乘方公式的特点.15、D【分析】利用平方差公式,以及完全平方公式判断即可.【详解】解:A、原式m(m+4n),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式(a2b)2,符合题意.故选:D.【点睛】此题考查了因式分解运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.二、填空题1、【分析】根据提公因式法因式分解即可.【详解】3

14、x2y12xy2故答案为:【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.2、-12【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【详解】解:a+b=2,ab=3,a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=34,=12.故答案为:12.【点睛】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.3、【分析】将各多项式分解因式,即可得到它们的公因式.【详解】解:, ,它们的公因式是,故答案为:.【点睛

15、】此题考查多项式的因式分解方法,公因式的定义,熟练掌握多项式的因式分解方法是解题的关键.4、;【分析】先提取公因式a,再根据平方差公式进行二次分解即可求得答案.【详解】a39a=故答案为:【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.5、-4【分析】由ab8,得到a8b,代入ab160,得到(b4)20,根据非负数的性质得到结论.【详解】解:ab8,a8b,ab160,(8b)b16b28b16(b4)20,(b4)20,b4,a4,a2b42(4)4,故答案为:4.【点睛】本题考查了配方法的应用,非负数的性质,正确的理解题意是解题的关键

16、.6、【分析】将a2-b2因式分解为(a+b)(a-b),再讨论正负,和积的正负,得出结果.【详解】解:ab0,a+b0,a-b0,a2-b2=(a+b)(a-b)0.故答案为:.【点睛】本题考查了因式分解,解题的关键是先把整式a2-b2因式分解,再利用ab0得到a-b和a+b的正负,利用负负得正判断大小.7、4【分析】用a,b分别表示出大长方形的长和宽,根据阴影部分的面积是大长方形面积的,列式计算即可求解.【详解】解:根据题意得:AD=BC=8b+a,AB=CD=2b+a,阴影部分的面积是大长方形面积的,非阴影部分的面积是大长方形面积的,整理得:,即,则小长方形纸片的长a与宽b的比值为4.故

17、答案为:4.【点睛】本题主要考查了整式的混合运算的应用,以及因式分解的应用,解题的关键是弄清题意,列出长方形面积的代数式及整式的混合运算顺序与运算法则.8、【分析】根据提公因式法因式分解即可.【详解】3a(xy)2b(yx)=故答案为:【点睛】本题考查了提公因式法因式分解,正确的计算是解题的关键.9、【分析】先提取公因式 再利用平方差公式分解因式即可得到答案.【详解】解:故答案为:【点睛】本题考查的是综合提公因式与公式法分解因式,熟练“一提二套三交叉四分组”的分解因式的方法与顺序是解题的关键.10、【分析】根据提公因式法分解因式求解即可.【详解】解:12a2b9ac.故答案为:.【点睛】此题考

18、查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.三、解答题1、见解析;1,2,3,;(2)见解析;3,1,4,;【分析】(1)由如图要拼成一个长为、宽为的长方形,即可得出答案;利用面积公式可得出这个;(2)根据题意画出相应图形;利用面积公式可得出;根据长方形的面积分解因式.【详解】解:如图:1,2,3,;(2)解:如图:3,1,4.;【点睛】本题主要考查了因式分解的应用,解题的关键是能运用图形的面积计算的不同方法得到多项式的因式分解.2、x(x+4)(x-4).【分析】原式提取x,再利用平方差公式继续分解即可.【详解】解:x316x=x(x2-16)=x(x+4)(x-4).【点睛】本题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、【分析】先提公因式,再根据完全平方公式因式分解即可.【详解】解:原式【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁